
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2012

A massively parallel adaptive sharp interface solver
with application to mechanical heart valve
simulations
John Arnold Mousel
University of Iowa

Copyright 2012 John A. Mousel

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3502

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mechanical Engineering Commons

Recommended Citation
Mousel, John Arnold. "A massively parallel adaptive sharp interface solver with application to mechanical heart valve simulations." PhD
(Doctor of Philosophy) thesis, University of Iowa, 2012.
http://ir.uiowa.edu/etd/3502.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages

A MASSIVELY PARALLEL ADAPTIVE SHARP INTERFACE SOLVER WITH

APPLICATION TO MECHANICAL HEART VALVE SIMULATIONS

by

John Arnold Mousel

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

December 2012

Thesis Supervisor: Professor H. S. Udaykumar

1

ABSTRACT

This thesis presents a framework for simulating the fluid dynamical behavior of

complex moving boundary problems in a high-performance computing environment. The

framework is implemented in the pELAFINT3D software package. Moving boundaries

are evolved in a seamless fashion through the use of distributed narrow band level set

methods and the effect of moving boundaries is incorporated into the flow solution by a

novel Cartesian grid method. The proposed Cartesian grid approach builds on the concept

of a ghost fluid method where boundary conditions are applied through least-squares

polynomial extrapolations. The method is hybridized such that computational cells

adjacent to moving boundaries change discretization schemes smoothly in time to avoid

the introduction of strong oscillations in the pressure field. The hybridization is shown to

have minimal effect on accuracy while significantly suppressing pressure oscillations.

The computational capability of the Cartesian grid approach is enhanced with a

massively parallel adaptive meshing algorithm. Local mesh enrichment is effected

through the use of octree refinement, and a scalable mesh pruning algorithm is used to

reduce the memory footprint of the Cartesian grid for geometries which are not well

bounded by a rectangular cuboid. The computational work is kept in a well-balanced state

through the use of an adaptive repartitioning strategy. The numerical scheme is validated

against many benchmark problems and the composite approach is demonstrated to work

well on tens of thousands of computational cores. A simulation of the closure phase of a

mechanical heart valve was carried out to demonstrate the ability of the pELAFINT3D

package to compute high Reynolds number flows with complex moving boundaries and a

wide disparity in length scales. Finally, a novel image-to-computation algorithm was

2

implemented to demonstrate the flexibility the current method allows in designing new

applications.

Abstract Approved: ____________________________________
 Thesis Supervisor

 Title and Department

 Date

A MASSIVELY PARALLEL ADAPTIVE SHARP INTERFACE SOLVER WITH

APPLICATION TO MECHANICAL HEART VALVE SIMULATIONS

by

John Arnold Mousel

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

December 2012

Thesis Supervisor: Professor H. S. Udaykumar

Copyright by

JOHN ARNOLD MOUSEL

2012

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

John Arnold Mousel

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Mechanical Engineering at the December 2012 graduation.

Thesis Committee: ___________________________________
 H. S. Udaykumar, Thesis Supervisor

 K. B. Chandran

 Jia Lu

 Pablo Carrica

 James Buchholz

 Sarah Vigmostad

 ii

ACKNOWLEDGMENTS

I would like to thank all those that helped me on this long journey. First, I must

thank my advisor, H. S. Udaykumar. Uday supported me in every way possible through

what has been the most trying time of my life in many ways. His role in this stage of my

life will never be forgotten.

Next, I must thank the members of my committee. I have learned a lot from all the

members. Their input both guided and pushed me throughout this process. Having gotten

to know most of my committee members over several years, I am confident that it would

be a task of the utmost difficulty to find a group of scholars with a better blend of

intelligence, work-ethic, and genuine care for the students under their leadership.

To my friends and family, I am deeply indebted to you for everything you have

done for me throughout this journey. I must give special credit to my mom and dad who

only cared that their son was doing what made him happy. To my current and former lab

mates: Seth, Anil, Shiv, Mehrdad, Liza, Keshav, Nirmal, Oishek, Vishwa, Neal, Ehsan,

and Scott. My experiences with you are those that I will remember for the rest of my life.

 Finally, to Jacquelyn. You endured with me through the most stressful period of

my life without fail. You will never know how much your support means to me. I can

only attempt to repay your kindness, generosity, and understanding.

 iii

ABSTRACT

This thesis presents a framework for simulating the fluid dynamical behavior of

complex moving boundary problems in a high-performance computing environment. The

framework is implemented in the pELAFINT3D software package. Moving boundaries

are evolved in a seamless fashion through the use of distributed narrow band level set

methods and the effect of moving boundaries is incorporated into the flow solution by a

novel Cartesian grid method. The proposed Cartesian grid approach builds on the concept

of a ghost fluid method where boundary conditions are applied through least-squares

polynomial extrapolations. The method is hybridized such that computational cells

adjacent to moving boundaries change discretization schemes smoothly in time to avoid

the introduction of strong oscillations in the pressure field. The hybridization is shown to

have minimal effect on accuracy while significantly suppressing pressure oscillations.

The computational capability of the Cartesian grid approach is enhanced with a

massively parallel adaptive meshing algorithm. Local mesh enrichment is effected

through the use of octree refinement, and a scalable mesh pruning algorithm is used to

reduce the memory footprint of the Cartesian grid for geometries which are not well

bounded by a rectangular cuboid. The computational work is kept in a well-balanced state

through the use of an adaptive repartitioning strategy. The numerical scheme is validated

against many benchmark problems and the composite approach is demonstrated to work

well on tens of thousands of computational cores. A simulation of the closure phase of a

mechanical heart valve was carried out to demonstrate the ability of the pELAFINT3D

package to compute high Reynolds number flows with complex moving boundaries and a

wide disparity in length scales. Finally, a novel image-to-computation algorithm was

 iv

implemented to demonstrate the flexibility the current method allows in designing new

applications.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Contributions of the Current Thesis .. 6

CHAPTER 2 THE CARTESIAN GRID METHOD .. 12

2.1 Introduction .. 12
2.2 Review of Cartesian Grid Methods ... 13
2.3 Level Set Fields ... 17
2.4 The Current Cartesian Grid Method .. 19

2.4.1 Governing Equations .. 19
2.4.2 Classification of Grid Points ... 19
2.4.3 Fractional Step Algorithm ... 22
2.4.4 Discretization of Operators .. 23
2.4.5 Ghost Node Treatment .. 24
2.4.6 Hybrid Node Treatment ... 31
2.4.7 Surface Vorticity and Force Calculation 34

2.5 Validation of the Current Interface Treatment .. 37
2.5.1 Poisson Equation with Dirichlet Conditions 37
2.5.2 Poisson Equation with Neumann Conditions 39
2.5.3 In-line Oscillating Cylinder ... 40

2.6 Conclusion ... 44

CHAPTER 3 PARALLEL ADAPTIVE FRAMEWORK ...60

3.1 Overview of the Current Framework ... 60
3.2 Parallel Mesh Structure.. 62
3.3 Parallel Mesh Construction and Refinement ... 66

3.3.1 Parallel Local Mesh Refinement Algorithm 66
3.3.2 Parallel Octree Smoothing ... 67
3.3.3 Adaptive Repartitioning .. 71
3.3.4 Parallel Mesh Trimming .. 75

3.4 Simulation Initialization .. 76
3.4.1 Input of Parameters .. 77
3.4.2 Base Mesh Initialization .. 77
3.4.3 Initial Mesh Refinement .. 78

3.5 Ghost Layer Construction .. 79
3.6 Parallel Level Set Construction ... 81

3.6.1 Parallel Level Set Tube Reconstruction .. 82

 vi

3.6.2 Parallel Level Set Repartitioning ... 83
3.7 Time-Advancement Algorithm .. 85
3.8 Discretization of Operators on Octree Meshes .. 86

3.8.1 Treatment of the Laplacian Term at Mesh Interfaces 87
3.8.2 Treatment of the Convection Term at Mesh Interfaces 89
3.8.3 Velocity Correction at Mesh Interfaces ... 90

3.9 Parallel Linear Solvers ... 91
3.10 Scaling Study on Kraken ... 94

CHAPTER 4 VALIDATING THE FLOW SOLVER .. 111

4.1 Introduction .. 111
4.2 Deformation of a Circular Level Set by a Vortex Flow 112
4.3 The Zalesak Disk Problem ... 113
4.4 Impulsive Flow Past a Stationary Cylinder ... 114
4.5 Flow Past a Stationary Sphere ... 116
4.6 Flow In a Bent Tube .. 117
4.7 Flow in a Vocal Fold Geometry at Re = 900 ... 118
4.8 Flow Past an Impulsively Started Moving Cylinder 120
4.9 Sedimentation of a Sphere ... 120

CHAPTER 5 CLOSURE OF A BILEAFLET MECHANICAL HEART VALVE 142

5.1 Introduction .. 142
5.2 Previous Mechanical Valve Simulations ... 142
5.3 The Medtronic ADVANTAGE Valve ... 145
5.4 Fluid-Structure Interaction Model ... 146
5.5 Simulation Setup .. 147
5.6 Results.. 148

CHAPTER 6 IMAGE TO COMPUTATION OF AN INTRACRANIAL
ANEURYSM ... 162

6.1 Introduction .. 162
6.2 Segmentation in Image Processing .. 163
6.3 The Current Image-to-Computation Algorithm 166
6.4 Direct Image-to-Computation of an Intracranial Aneurysm 168
6.5 Conclusions.. 170

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ... 176

7.1 Contributions of the Current Thesis .. 176
7.2 Future Work ... 177

REFERENCES ..180

 vii

LIST OF TABLES

Table 1 The level set criteria for the four types of computational points in the
hybridized ghost fluid method. .. 45

Table 2 Accuracy analysis of the solution of Equation (2.49) for a domain with an

embedded circle and an embedded nine-pointed star. ... 46

Table 3 A comparison of the accuracy of the current ghost fluid method with and
without hybridization for the embedded boundary shapes detailed in Table
2. .. 46

Table 4 Comparisons of drag coefficient, vortex bubble length, and Strouhal

number for flow behind a sphere at Reynolds numbers of 50, 100, and 300. ... 123

 viii

LIST OF FIGURES

Figure 1 An example of a bileaflet mechanical heart valve. ..9

Figure 2 An axial view of the valve in the fully closed position....................................10

Figure 3 A set of figures showing the assembly of the valve leaflets in the
housing. The butterfly-shaped hinge recesses are show in (a). In (b), the
tabs at the ends of the leaflets are inserted into the hinge recesses. In (c),
a zoomed-in view shows the gap between the hinge recess wall and the
leaflet tab. ...11

Figure 4 A depiction of the character of each of the types of grid nodes in the
current ghost fluid method. Fluid nodes are updated by solving the
Navier-Stokes equations, while ghost nodes are given values by
boundary condition preserving extrapolations. Values at hybrid nodes
are computed by a weighted average of interpolations and solutions of
the Navier-Stokes equations. ...47

Figure 5 A one-dimensional example of the concept of a ghost fluid method. An
extrapolation fit to values at the interface and neighboring grid nodes in
the fluid is used to populate the required value in the solid.............................48

Figure 6 A depiction of the discretization stencil for a grid node adjacent to a
solid object. In this case, the west neighbor of (i,j) is in the solid phase,
making the Laplacian operator ill-posed. The concept of a ghost fluid
method is to extend the flow field to nodes similar to (i,j) such that the
boundary condition on the solid surface is satisfied.49

Figure 7 A depiction of a one-dimensional extrapolation ghost population
approach. In this approach, ghosts are assigned values by fitting an
extrapolating polynomial to the values at the interface and neighbor grid
nodes in a Cartesian direction. ...50

Figure 8 A schematic of a normal probe ghost fluid method. Ghosts are assigned
values by fitting an extrapolating polynomial along the direction normal
to the interface. The interface value at the normal intersection of the
solid surface and the values at a set of probe points are used to construct
the extrapolating polynomial. Probe points are located at arbitrary
locations and therefore must be interpolated from surrounding grid
nodes. ...51

Figure 9 A schematic of the current construction of the least-squares cloud used
to interpolate the value at a probe point for ghost cell population. A fast
search algorithm is used to identify grid points in the neighborhood of
the probe location. Then, any grid node which has been found which is
in the solid is replaced by the boundary condition at the closest point on
the interface (open white circles). The ghost node is excluded from the
cloud. ..52

Figure 10 A schematic of the current construction of the least-squares cloud used
to interpolate the value at a probe point for hybrid cell population. A
fast search algorithm is used to identify grid points in the neighborhood

 ix

of the probe location. Any grid node which has been found which is in
the solid is replaced by the boundary condition at the closest point on
the interface (open white circles). The hybrid node is excluded from the
cloud. ..53

Figure 11 The 16 standard configurations of the Marching Cubes algorithm [74].
The intersection of an isocontour with the edges of a computational cell
leads to arbitrary polygonal shapes. Marching cubes efficiently
determines the shape from a hexadecimal lookup table using the set of
cut edges...54

Figure 12 Contours of the solution of Equation (2.49) for a domain with an
embedded circle (left) and a domain with an embedded nine-pointed star
(right). The current ghost fluid method produces smooth accurate
contours even for the highly concave region of the star case.55

Figure 13 Error analysis of the solution of Equation (2.49) in the L∞-norm for a
domain with an embedded circle (circles) and an embedded nine-
pointed star (squares). The maximum error is computed on 5 grids with
a mesh refinement ratio of two. The solid black line shows a slope of 2
for comparison. ..55

Figure 14 Solution contours for a Neumann problem on concentric circles. The
solution smoothly captures the zero normal derivative condition on the
concave and convex boundaries...56

Figure 15 Error analysis of the solution of Equation (2.52) in the L∞-norm for the
standard (circles) and hybridized (squares) ghost fluid method. The
solid black line shows a slope of 2 for comparison. ..56

Figure 16 Time histories of drag force (left) and divergence (right) for an
oscillating inline cylinder where the ghost fluid method has (a) no
hybridization, (b) hybridization of the momentum equation, (c)
hybridization of the Poisson equation, and (d) hybridization of both the
momentum and Poisson equations. The maximum divergence is denoted
by the solid black line, while the average divergence is represented by
the dashed line..57

Figure 17 Time histories of drag force for an oscillating inline cylinder solved
with the standard ghost fluid method (left) and the optimal hybridized
method (right) for a CFL number of 0.1 and a grid spacing of (a) dx =
1/16, (b) dx = 1/32, and (c) dx = 1/64. ...58

Figure 18 Time histories of drag force for an oscillating inline cylinder solved
with the standard ghost fluid method (left) and the optimal hybridized
method (right) for a grid spacing of dx = 1/16 and (a) CFL = 0.1 (b)
CFL = 0.2, and (c) CFL = 0.4. ...59

Figure 19 An example of the pELAFINT3D framework applied to an aortic valve
geometry. The geometry is shown in panel (a). In (b), the geometry is
enclosed in a bounding Cartesian grid. In (c), the Cartesian grid is
trimmed to conform to the geometry. In (d), local mesh refinement is
applied in the desired locations. The regions of (d) are colored by
partition. ...98

 x

Figure 20 An example of a mesh generated by pELAFINT3D. The mesh is a
Cartesian base grid partitioned between four MPI processes with two
levels of quadtree refinement applied in a circular pattern.99

Figure 21 A depiction of a distributed base mesh to make the concept of a ghost
layer clear. On the left, the base mesh is distributed between three
partitions. On the right, the partitions are separated to show the layer of
ghost cells around each partition edge. The ghost cells are duplicates of
the set of cells that are adjacent to the cells at the edge of a partition. In
this case, the blue cells at the edge of the green piece of the mesh are the
neighbors on the blue partition that have information required by cells
on the green partition. ..99

Figure 22 Schematics of the three numbering systems required in the current
algorithm. In (a), the natural base mesh numbering is shown. This
numbering is the standard Cartesian numbering system. It is not
continuous on a partition. The application numbering of the base mesh
is shown in (b). This numbering is continuous on a partition, and is such
that the corresponding natural numbering of the cells is in sorted order.
In (c), the application ordering of the refined mesh is shown. This
scheme induces a partial z-ordering. ..100

Figure 23 A quadtree which does not satisfy the 2:1 balance constraint (left) and
the quadtree after balancing. The quadtree is distributed over two
partitions, P0 and P1, and the imbalance must be resolved across the
partition boundary. ...101

Figure 24 A depiction of the recursive behavior of a naïve 2:1 quadtree balancing
algorithm in a two partition grid where the white region belongs to
partition 1 and the grey is owned by partition 2. The black circle
represents a cell for which imbalances are to be detected and resolved.
In (a), an original imbalance exists between the cell and its east
neighbor. In (b) and (c), the resolution of an imbalance leads to new
imbalances for neighbor cells. In (d), the resolution of the imbalance
formed in (c) introduces an imbalance across the partition boundary. In
(e), the imbalance of the neighboring partition cell is resolved.102

Figure 25 A depiction of the parallel Prioritized Ripple Propagation.103

Figure 26 A schematic of the mesh initialization procedure. In (a), an initial base
mesh is partitioned in vertical strips. In (b), a portion of the base mesh is
pruned and the remaining mesh is re-partitioned. In (c)-(e), additional
refinements occurs, and base cells that have no mesh at the finest level
inside the circle are pruned away. ..104

Figure 27 The initial level set field of the Zalesak disk problem. The interface
shape is shown in (a). In (b), the associated level set field is shown, and
(c) shows the region of the mesh that corresponds to the level set narrow
band. ...105

Figure 28 The evolution of the Zalesak disk level set field over one complete
revolution. The figure shows the level set contours (left), and the narrow
band colored by partition (right) at rotation angles of (a) 0 degrees, (b)
90 degrees, (c) 180 degrees, and (d) 270 degrees. ...106

 xi

Figure 29 Configurations of the mesh used in the discussion of (a) the
discretization of the Laplacian operator at mesh interfaces, and (b) the
discretization of the convection operator at mesh interfaces.107

Figure 30 Time required in solving the Poisson problem specified by Equation
(2.49) on grids of increasing size. The BiCGStab(l) Krylov solver is
preconditioned by ILU, GAMG, and HYPRE. The sensitivity of solve
time to the least-squares treatment applied in the sharp-interface method
is tested by computing the time required for both linear and quadratic
least-squares fits. ..108

Figure 31 Wall clock time for the first 50 time steps of the computation of flow
past a sphere with adaptive meshing and repartitioning every 5 time
steps for cores counts of 1200, 2400, 4800, 9600, and 16512. The mesh
refinement procedure is approximately the same computational cost as
applying the flow solver. All parts of the algorithm reduce in time as the
core count increases. ..109

Figure 32 The grid size for the first 50 time steps of flow past a sphere. The grid
starts at over 20 million grid points, and is refined to approximately 300
million grid points. ...109

Figure 33 Wall clock time versus processor count for the solution of flow past a
sphere on 1200, 2400, 4800, 9600, and 16512 cores. Ideal scaling is
shown by the solid black line. The scalability up to 4800 cores shows
very good agreement with perfect scaling. Core counts larger than 4800
show significant deviation from the ideal scaling. ...110

Figure 34 The average number of grid cells per processor for flow past a sphere on
1200, 2400, 4800, 9600, and 16512 cores. The average partition size at
time step 1 is showne by triangles, and the average partition size at time
step 50 is shown by squares. ..110

Figure 35 Evolution of an initially circular level set field in a straining vortex
flow. The field is shown at times (a) 0, (b) 1, (c) 2, and (d) 3. The level
set field is capable of handling large deformations in a natural manner.124

Figure 36 Partitioning of the level set tube for the circle in a vortex field across 4
MPI processes. The partitioning adapts as the level set field evolves
such that each partition has approximately the same number of level set
tube points. ...125

Figure 37 Comparison of the results for the level set field of a circle in a vortex
flow for 3 subsequent levels of refinement. The coarsest mesh is shown
in red, while the finest mesh is blue. The entire level set is compared in
(a) while the deviations in the position of the leading tip are shown in
(b). The thicker head region of the level set field suffers less mass loss
than the thin tail. Even though the level set is not resolved at the tail, the
computation remains stable..126

Figure 38 Comparison of the final zero contour positions of level set field for the
Zalesak disk using ENO (red) and WENO (blue) spatial discretization
for the solution of the level set advection equation.127

 xii

Figure 39 A comparison the current results for vorticity contours with the results
of [92] for an impulsively started flow around a stationary cylinder at
Re = 1000 at a time of 1, 2, 3, 4, 5, and 6. ..128

Figure 40 A comparison of the current surface vorticity results (solid line) with the
results of [92] (squares) for an impulsively started flow around a
stationary cylinder at Re = 1000 at time (a) T = 0.4, (b) T = 1.0, (c) T =
3.0, and (d) T = 5.0. ...129

Figure 41 A comparison of the current drag coefficient results (solid line) with the
results of [92] for an impulsively started flow around a stationary
cylinder at Re = 1000. ..129

Figure 42 A comparison the current results for vorticity contours with the results
of [92] for an impulsively started flow around a stationary cylinder at
Re = 9500 at times of 2, 3.5, and 6. ...130

Figure 43 A comparison of the current surface vorticity results (solid line) with the
results of [92] (squares) for an impulsively started flow around a
stationary cylinder at Re = 9500 at time (a) T = 0.4, (b) T = 1.4, (c) T =
1.8, (d) T = 2.6, (e) 4.2, and (f) 5.0. ...131

Figure 44 A comparison of the current drag coefficient results (solid line) with the
results of [92] an impulsively started flow around a stationary cylinder
at Re = 9500. ..132

Figure 45 The evolution of the vorticity field and computational mesh for the
impulsively started flow around a stationary cylinder at Re = 9500 for
times of (a) 2.0, (b) 3.5, and (c) 6.0. ..133

Figure 46 Vortical structures behind a sphere at a Reynolds number of 300 as
indicated by the λ-2 criterion. The current approach is capable of the
long time integration which is required to capture the wake in great
detail far downstream. ..134

Figure 47 The time histories of lift and drag coefficient for flow past a sphere at a
Reynolds number of 300. The average values of both coefficients are in
good agreement with the results of [93]. ...135

Figure 48 The simulation of secondary flow in a 90 degree bent tube at a Reynolds
number of 300. In (a), the ability of the current pruning algorithm is
shown by the resulting Cartesian background grid. In (b) the velocity
magnitude is plotted on the center-plane and streamlines are plotted to
indicate the presence of a secondary flow. The axial velocity at the bend
outlet is compared with the experimental results of [95] in (c).136

Figure 49 A schematic of the human larynx. The upstream and downstream
channels are separated by a complex flap system which induces the jet
flow required for sound production. ..137

Figure 50 The representative vocal fold geometry replicated from [96]. The second
constriction gap is twice that of the first constriction.137

 xiii

Figure 51 A comparison of vorticity contours for the current results (left) with the
results of [96] (right) at times of (a) 3.53 ms, (b) 5.8 ms, (c) 7.2 ms, (d)
7.8 ms, and (e) 9.5 ms. There is very good qualitative agreement, but the
current results resolve the smaller-scale features with higher fidelity.138

Figure 52 A comparison of the current results (solid lines) for pressure with the
results of [96] (symbols) at times of 3.73 ms (circles) and 4.43 ms
(squares). ..139

Figure 53 The vorticity on the surface of an impulsively moving cylinder. The
cylinder is set in motion with unit velocity in the negative x-direction.
The current results (solid lines) compare well with the results of
Koumousatkos and Leonard [92] (squares). ..140

Figure 54 The x-vorticity about a sphere settling under the action of gravity. The
Reynolds number is 100 and the Froude number is 10.141

Figure 55 The time histories of (a) drag force and (b) settling velocity for a sphere
settling under the action of gravity. The Reynolds number is 100 and the
Froude number is 11. The force history is smooth in time, showing the
efficacy of the current hybridized interface treatment. The drag force at
steady state matches the value of 1.09 predicted by drag correlation very
well. ..141

Figure 56 The Medtronic ADVANTAGE bi-leaflet mechanical heart valve. The
valve is composed of two pyrolytic occluders which rotate in butterfly-
shaped recesses in a pyrolytic housing. ...153

Figure 57 The geometry of the bi-leaflet mechanical heart valve. The valve is three
components: a housing and two leaflets. The leaflets have tabs at each
end which insert into butterfly-shaped recesses in the housing. In the
current setup, the housing is inserted in a tube which has three bulbs to
approximate the Sinus of Valsalva. ...154

Figure 58 The unsteady flow rate used in the mechanical valve problem. The flow
rate is constructed from a cubic-spline fit to data digitized from the
experimental results of [104]. ..155

Figure 59 The forward flow in the Medtronic ADVANTAGE mechanical heart
valve as indicated by λ-2 isocontours colored by vorticity magnitude.
The flow is shown at times of (a) 96 ms, (b) 125 ms, (c) 162 ms, (d) 194
ms, (e) 228 ms, (f) 260 ms, (g) 297 ms, and (h) 333 ms.156

Figure 60 The closure of the leaflets during reverse flow in the Medtronic
ADVANTAGE mechanical heart valve as indicated by λ-2 isocontours.
The isocontours are colored by vorticity magnitude. The flow is shown
at times of (a) 366 ms, (b) 383 ms, (c) 400 ms, (d) 420 ms, and (e) 435
ms. ..157

Figure 61 The forward flow in the Medtronic ADVANTAGE mechanical heart
valve as indicated by slices of x-vorticity (left), y-vorticity (center) and
z-vorticity (right) on the z = 1 plane. The flow is shown at times of (a)
96 ms, (b) 125 ms, (c) 162 ms, (d) 194 ms, (e) 228 ms, (f) 260 ms, (g)
297 ms, and (h) 333 ms. ...158

 xiv

Figure 62 The reverse flow in the Medtronic ADVANTAGE mechanical heart
valve as indicated by slices of x-vorticity (left), y-vorticity (center) and
z-vorticity (right) on the z = 1 plane. The flow is shown at times of (a)
366 ms, (b) 383 ms, (c) 400 ms, and (d) 420 ms. ..159

Figure 63 The angle of the valve leaflets versus time during valve closure for the
current work (line) and [15] (circles). The closure time is approximately
100 ms in the current results. ...160

Figure 64 The size of the computational grid versus time step for the MHV
simulation. The grid is initially approximately 10 million grid cells, and
increases to nearly 30 million cells at the termination of the simulation.
The start of valve closure is evidenced by the return to increasing
behavior of the grid size around time step 7500. ...161

Figure 65 In (a), the wall clock time required to apply the flow solver versus time
step is shown, while in (b), a zoomed in view shows the wall clock time
behavior at the transition between the leaflets being stationary and
moving. ..161

Figure 66 A flow chart depicting the current image-to-computation algorithm. In
steps 1 and 2, pre-processing improves the robustness of the algorithm.
In steps 3 and 4, the image is segmented which results immediately in
level set representations. In step 5, connected regions are identified and
given unique numbering. In step 6, the user selects the region of interest,
and all other objects are discarded. ..172

Figure 67 A schematic of the segmented intracranial aneurysm. The aneurysm
bulb is attached to four vessels. Two vessels are treated as inlets, and
two are specified as outlets as shown. ...173

Figure 68 The flow pattern in the aneurysm is elucidated by plotting streamlines.
The streamlines are colored by pressure value to indicate the
acceleration behavior of the flow. ..174

Figure 69 A plot of the surface pressure induced by flow in the intracranial
aneurysm. ...175

Figure 70 A plot of the wall shear stress induced by the flow intracranial
aneurysm. The stress is a maximum at the shoulders of the geometry
where the bulb meets the vessels. ..175

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

A common treatment for compromised heart valves is surgical replacement with

some form of prosthetic valve, with approximately 100,000 replacement procedures

performed in the United States annually [1]. Valve prostheses are generalized into two

broad categories, mechanical heart valves (MHV) and bio-prosthetic heart valves (BHV).

The most commonly used mechanical valves, accounting for 80% of mechanical

prosthesis replacements, are based on the bileaflet design introduced by St. Jude Medical,

Inc. in 1978 [2]. The St. Jude Medical valve design, which is shown in Figure 1, has two

pyrolytic carbon leaflets which rotate within a hinge recess in a surrounding valve

housing. In the fully open position, the leaflets are nearly parallel with the flow direction

in an attempt to minimize flow disturbance. In the fully closed position (Figure 2), there

exist small gaps between the adjacent leaflet edges as well as between the leaflets and the

housing which are designed to clear out critical regions and prevent blood element

buildup to reduce complications from the device and minimize the amount of coagulation

therapy the patient must receive. These gaps are two orders of magnitude smaller than the

housing diameter. In Figure 3(a), the butterfly shape of the housing recesses about which

the leaflets rotate is shown. Figure 3(b) shows the manner in which the leaflets are

inserted in butterfly shaped recesses in the housing is shown, while Figure 3(c) identifies

a third gap between the outer edge of the leaflet and the housing recess.

2

Even after half a century of use, mechanical heart valves still require further

research to reduce the non-physiologic nature of the flow field, which is the source of

potential medical complications [3], of which the most serious complications include

thrombus formation due to blood element trauma and subsequent device failure [2]. In the

systolic phase of the flow, excessive fluid stresses are generated by the non-physiologic

flow patterns. The increased stress as well as contact of blood elements with the device

surface may lead to blood element damage [4, 5]. In the closed valve position, a large

pressure gradient is imposed across the device which leads to the generation of strong and

damaging small-scale leakage flows that entrain platelets such that they are exposed to

elevated stresses for a extended durations [6-8]. Simon et al. [8] performed numerical

simulations of leakage flow in the hinge region of a St. Jude mechanical valve and found

that platelet activation and thrombus formation was likely to occur near the hinge region

during systole, while thrombosis is more likely to occur during systole.

While thrombus formation can be managed with anti-coagulant therapy, this

approach has its own set of complications, including increased risk of hemorrhage and

infection [2]. Additionally, the high shear stresses induced by the device may lead to the

stripping of endothelial cells from vessel walls, which further promotes platelet

activation. Other complications of mechanical heart valves include leakages, infections,

and tissue overgrowth [2].

There is still a lack of consensus in the literature about which flow scales are most

damaging to cells. In [9] and [10] it is argued that it is the energetic middle-range flow

structures that are most damaging, while [11, 12] propose that it is in fact the smallest

structures that are responsible for blood element damage. Furthermore, it is still unclear

3

what the smallest scale is that exists in the MHV flow field. During the systolic phase of

the cardiac cycle, the forward flow has a peak Reynolds number of approximately 6,000

and a mean Reynolds number of nearly 4000, which results in an estimate of 0.04 and

0.06 mm as the size of the smallest flow structures based on Kolmogorov theory [13].

While the assumptions of Kolmogorov theory are not applicable due to the short transient

nature of the MHV flow field, Bellofiore and Quinlan [14] used PIV to establish that

there exists structures blood damaging smaller than 0.120 mm in the forward flow phase.

During diastole, the jets occurring due to the leakage flow are of the scale of the gap

dimensions (O(0.1 mm)).

While a simulation resolved at the inertial length scale will obtain correct leaflet

dynamics [13], the damage of blood elements by flow structures cannot be examined at

such a coarse scale. To probe the required range of scales computationally requires a

dense grid in order to resolve the smallest vortical structures. Considering a tube one

valve diameter across and one valve diameter long, a grid spacing of the Kolmogorov

length scale would require 200 million grid points. Therefore, such a simulation will

require a combination of high performance parallel computing, as well as adaptive

meshing to make accurately solving the problem tractable.

A comprehensive numerical investigation of the process of thrombus formation in

valve prostheses would require a combination of many computational techniques to

account for all the physical mechanisms at play. First, a flow solver that can handle

moving boundaries and moderate Reynolds number flows is required. In order to

examine the response of blood elements to fluid-induced stress, an accurate

computational model that can handle large numbers of deformable particles is needed.

4

Computing the deformation of the vascular structures in the vicinity of the prosthesis

would require a fluid-structure interaction (FSI) algorithm which can handle flexible

solids. Modeling the effects of the chemical factors in the blood which play an important

role in the activation and aggregation of platelets introduces another level of complexity.

Additionally, if patient-specific simulations are desired, a technique to convert medical

images to simulation geometries is required. In this work, we focus on constructing a

flow solver which promotes a unified algorithm to perform direct image to computation

simulations.

A considerable amount of work has been conducted with regards to heart valve

modeling. The simulation of a single phase Newtonian fluid in MHV devices has been

carried out by many researchers with varying levels of approximation. Currently, the

most sophisticated three-dimensional calculations of the MHV problem have computed

the forward flow at the physiologic Reynolds numbers, but no simulation has completely

resolved the flow field and the prostheses gaps have never been completely resolved in a

simulation of the full system [13, 15-17]. In order to attempt to elucidate the physics in

the gap region, two-dimensional and three-dimensional calculations of the leakage flow

have been carried out with simplifying assumptions. In [6, 7, 18, 19], the closing phase of

valve motion and the associated leakage jet through the gap around the leaflet edge was

assumed to start from a quiescent condition. However, starting from a quiescent condition

neglects the presence of the rich vortical structures generated during the opening phase

and subsequently swept to the ventricular side of the valve during closure, which may

limit the physical insight into the cell damage process that can be obtained from such

simulations. In [8], the leakage flow in the hinge region was modeled by performing a

5

simulation on one quarter of the geometry in the vicinity of the hinge with boundary

conditions obtained from a separate simulation

Much work has also been carried out on obtaining realistic cardiovascular

geometries from medical images and then solving for the flow field on an unstructured

mesh [20, 21] or structured curvilinear grids [22]. While this approach was successful in

these applications, extending the methodology to boundaries with large scale boundary

motion may be difficult to manage due to the complexity of generating high quality

unstructured meshes [23]. In [24], patient specific cardiovascular geometries were

obtained from medical images and the flow fields were subsequently computed using an

unstructured Cartesian approach with a reduced memory footprint. However, the manner

in which the geometries were obtained was independent of the nature of the Cartesian

method.

Due to the complexity of unstructured mesh generation, as well as the high

memory requirements and reduced accuracy of unstructured grid methods [23, 25], and

the intimate connection with image analysis techniques, we propose that an enhanced

Cartesian approach is a natural route to assemble the computational components required

to examine the process of thrombus formation in mechanical heart valves. An efficient

moving boundary flow solver can be based on a Cartesian grid interface treatment

approach [26] combined with level set representation of geometries [27]. There exist

mesh refinement algorithms for Cartesian grids which scale on the largest

supercomputers currently available and which can be used to increase the efficiency of

the method [28, 29]. This thesis develops the beginning of a massively parallel

framework for solving complex moving boundary problems on Cartesian grids, enabling

6

the solution of the MHV problem along with a variety of other problems in a relatively

simple, unified fashion.

1.2 Contributions of the Current Thesis

In the current thesis, a framework, pELAFINT3D, is established as a starting

point for assembling the multi-physics components required in examining the process of

thrombus formation in mechanical heart valves. The motivating goal of pELAFINT3D is

to allow the simulation of computationally challenging moving boundary problems with

no requirements of the user to interact with mesh construction or maintenance. The user

is only required to provide a description of the initial state of any complex boundaries.

The boundary configuration may be supplied by a mesh description of the surface, but

this mesh must only smoothly represent the boundary. There is no restriction on mesh

quality issues such as element size or skewness. This greatly reduces the burden a user

must endure to setup a challenging simulation.

The heart of pELAFINT3D is a completely distributed Cartesian grid which is

enhanced at run time to ensure solution quality. Geometries are represented using a

distributed level set method which allows for unified treatment of complex boundary

motions. The flow solver is constructed using a novel ghost fluid Cartesian grid method.

Specifically, the features of pELAFINT3D are:

a) A massively parallel distributed Cartesian grid with octree refinement and

mesh pruning capabilities. These capabilities enhance the applicability of the

package to problems with small localized features as well as tortuous geometries.

b) A hybridized least-squares ghost fluid Cartesian grid method for accurately

simulating the flow dynamics in an incompressible fluid with moving boundaries.

7

The least-squares construction serves two purposes. First, it is a starting point for

a higher-order interface treatment. Second, it enhances the robustness of the

interface treatment in the presence of strong boundary curvature and contacting

surfaces. The hybridization alleviates the strong numerical pressure oscillations

that plague sharp-interface Cartesian grid methods.

c) An efficient distributed narrow band level set method.

d) A direct image-to-computation algorithm founded in the methods of image

segmentation. The method is applied to examine the flow in an intracranial

aneurysm.

The remainder of the thesis is a presentation of the components of pELAFINT3D

and its application. In Chapter 2, the novel Cartesian grid method is presented and

examined in detail. Emphasis is placed on the properties of the scheme for moving

boundary problems, and in particular, the ability of the scheme to suppress the strong

numerical oscillations in pressure common to most Cartesian grid methods is

demonstrated. In Chapter 3, the parallel mesh structure and algorithms are presented. The

framework is demonstrated to operate efficiently on tens of thousands of cores on

Kraken, a state-of-the-art supercomputer. In Chapter 4, the package is validated against

several standard benchmark problems. Chapter 5 presents an application of the

pELAFINT3D package to compute the flow through a three-dimensional mechanical

heart valve undergoing closure. In Chapter 6, a novel image-to-computation algorithm is

presented which is a natural extension of the current methodology. The algorithm is then

applied to simulate the flow through an intracranial aneurysm which is extracted from CT

8

medical images. Chapter 7 provides a summary of the work accomplished in this thesis,

and provides several avenues to extend the current research.

9

Figure 1 An example of a bileaflet mechanical heart valve.

10

Figure 2 An axial view of the valve in the fully closed position.

Housing gap

Centerline gap

11

Figure 3 A set of figures showing the assembly of the valve leaflets in the housing. The
butterfly-shaped hinge recesses are show in (a). In (b), the tabs at the ends of the leaflets
are inserted into the hinge recesses. In (c), a zoomed-in view shows the gap between the
hinge recess wall and the leaflet tab.

(c)

Hinge gap

Hinge recess

(a)

(b)

12

CHAPTER 2

THE CARTESIAN GRID METHOD

2.1 Introduction

The current chapter describes the novel Cartesian grid approach developed to

facilitate the solution of complex moving boundary problems which contain strong

curvatures and nearly contacting interfaces. The governing equations are solved on a

Cartesian mesh which is not required to align with the geometry of the problem. Level set

representations of embedded boundaries are used to construct a sharp interface treatment

which includes the effects of boundary conditions directly in the discrete operators.

To this end, boundary conditions are utilized to construct an extrapolation of the

flow variables to a set of ghost grid points inside solid objects such that all computational

stencils for grid nodes in the fluid are complete. A robust high-order extrapolation is

created using a least-squares technique. To accurately incorporate the shape of the

embedded boundary, the boundary conditions at multiple points on the interface are used

to construct the extrapolation. The required locations of the interface where boundary

conditions are required are easily computed with high accuracy using the level set

representation.

Following an approach similar to Luo et al. [30], a hybridization of the method is

developed such that grid points smoothly transition between solving the governing

equations and being populated by extrapolation techniques as the surface evolves. This

approach stabilizes the temporal character of the pressure field by smoothing the strong

variation in the truncation error as a grid point transitions from one type to another.

13

The current method is accurate, efficient, and simple to implement. The use of the

least-squares procedure with the level set representation allows the current method to be

extended to higher orders of accuracy. The current scheme is shown to obtain locally

2nd-order results with and without hybridization for Poisson problems with both

Dirichlet and Neumann conditions. Additionally, the method handles difficult interface

conditions, such as strongly concave curvatures and contacting surfaces, naturally

through the least-squares procedure without the need to consider special case logic. The

hybridization technique is shown to significantly reduce the magnitude of oscillations in

the pressure field associated with moving boundary problems.

2.2 Review of Cartesian Grid Methods

In order to handle moving boundary problems, traditional body-fitted grid

methods require re-meshing as the object moves. Re-meshing is typically an expensive

operation, and obtaining high quality meshes is a difficult task, so avoiding this operation

is desirable. Cartesian grid methods dispense with the need to continuously regenerate the

computational grid by solving the governing equations on a fixed Cartesian mesh for

which the embedded boundary is allowed to cut through without any restrictions on

topology [26]. The challenge then becomes one of how to apply boundary conditions

specified on embedded surfaces.

Cartesian grid methods can be separated into two classes which are determined by

whether the boundary conditions are imposed by modifying the continuous governing

equations or modifying the numerical discretization scheme [26]. The first class of

methods, known as continuous forcing methods, introduce the effect of the boundary

14

through the addition of a forcing function to the momentum equations, which now takes

the form:

 ∂u��⃗
∂t

+ u�⃗ ∙ ∇u�⃗ = −∇p + 1
Re
∇2u�⃗ + f⃗b . (2.1)

The governing equations are then solved for one continuous field that covers both

the interior and exterior of the object. Any particular continuous forcing method is

defined by the form of the forcing term, f⃗b. The most popular continuous forcing method

has been the Immersed Boundary Method (IBM) [31, 32] which was developed to

facilitate the solution of the flow of blood in the human heart [33]. In this approach,

singular surface forces defined on a Lagrangian mesh are converted to volumetric forces

defined on Cartesian flow mesh using numerical delta functions. This approach has found

extensive use in the area of bio-fluid dynamics [31, 33, 34], especially in the study of

suspensions of flowing cells [35-37]. However, IBM has several drawbacks. First, the

numerical delta function spreads the force over a finite support which smears the effect of

the interface, thereby degrading accuracy [38]. Additionally, the above approach requires

special treatment to handle rigid boundaries [39]. Improvements have been made to the

IBM in recent years [39, 40], and the idea of transmitting the effect of boundaries to the

fluid through the use of source has been extended to the finite element method by the

Fictitious Domain Method [41] and Immersed Finite-Element Method [42].

Recently, many methods have moved away from using delta functions to

distribute the force between grids. Instead, a forcing is derived in terms of the numerical

discretization scheme such that velocity boundary conditions are discretely satisfied after

the imposition of the forcing [43-45]. The forcing is applied at a set of points adjacent to

the interface, where the points can be inside the interface, outside the interface, or both.

15

This type of approach does not suffer from the accuracy or time-step restrictions of the

original IBM. Because the forcing is derived from the numerical approximation to the

governing equations, this type of method is not strictly a member of the continuous

forcing method, and is termed a discrete forcing approach. It is instead similar in spirit to

the methods which will be discussed next in that the treatment of boundary conditions is

intimately connected with the numerical scheme. However, in contrast to the methods to

be discussed next, discrete forcing methods do not directly modify numerical

discretization operators, but instead determine a numerically consistent forcing term to be

supplied to the continuous governing equations.

In a second class of methods, boundary conditions are imposed directly by

modification of the discretization of operators for grid points adjacent to the boundary.

The governing equations are solved in the form

∂u��⃗
∂t

+ u�⃗ ∙ ∇u�⃗ = −∇p + 1
Re
∇2u�⃗ (2.2)

The spatially discrete operators are constructed in a way such that boundary

conditions are directly incorporated into non-uniform discretization stencils. Examples of

this type of approach are the Immersed Interface Method (IIM) [38, 46, 47], the Ghost

Fluid Method (GFM) [25, 48-50], the Sharp Interface Method (SIM) [51-53], and the

Extended Finite-Element Method (XFEM) [54-56]. The Immersed Interface Method

converts to normal and tangential coordinates and then solves a set of linear equations for

coefficients that incorporate the imposed jump conditions into the discretization matrix

directly for all cells adjacent to the interface. The Ghost Fluid Method uses a boundary-

condition satisfying extrapolation scheme to assign values to the interface cells interior to

the object, so that standard discretization stencils can be used at all cells in the fluid

16

phase. The Sharp Interface Method solves a control-volume formulation of the governing

equations, such that control volumes that are intersected by the interface are re-shaped to

conform to the boundary. XFEM subdivides elements that are cut by the interface such

that local degrees of freedom always align with the interface.

The approaches discussed above all have relative advantages and disadvantages.

The Sharp Interface Method and XFEM are the most accurate. The Sharp Interface

method conserves mass and momentum, but formulating the scheme in three dimensions

is challenging due to the number of special cases that must be considered when re-

shaping control volumes. Additionally, small control volumes produced by the re-shaping

process must be handled through special techniques such as cell merging or cell linking

to avoid introducing a stringent time-step restriction due to the CFL condition [57-59].

The Immersed Interface Method is accurate, but it is not directly applicable to cases

where the object is a rigid solid. Ghost fluid methods use extrapolation stencils that

require no matrix inversions to formulate, are simple to implement, and can handle rigid

objects. However, ghost fluid methods are not conservative and are also generally slightly

less accurate than the other approaches. In this work, we adopt the ghost fluid approach

due to its simplicity.

The concept of a ghost fluid, first popularized by Fedkiw et al. [48], was

originally used to simulate shocks and discontinuities. The approach was extended to the

solution of Poisson and heat equations by Gibou et al. in [49] and later a fourth-order

GFM scheme based on dimension-by-dimension Lagrange interpolation was proposed in

[60]. The concept of a ghost fluid was extended to incompressible flows by Tseng and

17

Ferziger [25]. Mittal et al. [50] put forth a slight variant of the scheme proposed by Tseng

and Ferziger.

It is well known that many Cartesian grid methods produce strong numerical

oscillations in the pressure field in the case of moving boundaries due to a lack of

geometric volume conservation and a temporal discontinuity in the velocity field as a grid

point changes from fluid to solid phase and vice versa [30, 61, 62]. While the pressure

oscillation does not significantly affect the velocity field, it can be problematic if the

motion of a solid object is determined by the force induced by the pressure field. Kim et

al. [44] significantly reduced the pressure oscillation associated with their discrete forcing

approach by utilizing mass sources/sinks to satisfy mass conservation at grid cells that

contained the immersed interface. Seo and Mittal [62] used a hybrid ghost cell method-

cut cell technique where only the source term of the Poisson equation was discretized

using a cut-cell technique. This approach ensures that the geometric volume of the

embedded boundary is discretely conserved. Luo et al. [30] introduced a scheme where

the flow variables are computed as weighted averages of the solutions to the governing

equations and values extrapolated from neighboring grid nodes.

2.3 Level Set Fields

Objects embedded in the computational mesh are represented implicitly by level

set fields. A level set field, ϕ(x�⃗ , t), is an n+1 dimensional scalar field defined as a signed

distance from a grid point to the nearest n-dimensional surface [27, 63]. The surface itself

is embedded as the zero iso-contour of the scalar field. In this work, the level set field is

more specifically taken to be a signed normal distance function, which gives the normal

18

distance from the location to the closest point on the embedded surface. It is defined to be

positive if is exterior to the embedded object and negative otherwise.

The level set field is governed by a hyperbolic partial differential equation subject

to a given propagation velocity [63]. The level set advection equation is

∂ϕ
∂t

+ V��⃗ ∙ ∇ϕ = 0. (2.3)

Here, V��⃗ is the propagation velocity of the level set field which is required in the entire

domain for which the level set is defined. Typically, the physics of the problem only

defines the propagation velocity of the zero level set contours. In this case, the interface

velocity is extended along the normal direction to define propagation velocities

everywhere else.

The level set advection equation (2.3) is solved numerically using a 3rd-order

TVD Runge-Kutta time-stepping scheme in conjunction with 5th-order WENO upwind

spatial discretizations [64, 65]. In order to save computational effort and memory, the

level set is only calculated and stored in a narrow band of grid points around the interface

[66], or more specifically a dynamic tubular grid [67]. As the level set moves, the narrow

band requires rebuilding so the zero level set contour does not pass out of the domain

over which it is computed. During this rebuilding step, points that are newly introduced

to the band are initialized with the level set re-initialization equation [68]:

∂ϕ
∂τ

+ sign(ϕ)n�⃗ ∙ ∇ϕ = 0 (2.4)

Here, τ is a pseudo-time, and the solution of equation (2.4) is marched to a steady state.

After convergence, the level set field satisfies the normal distance property, |∇ϕ| = 1,

and the points newly introduced into the narrow band have a valid value. The

implementation details of the narrow band structure substantially increase the difficulty

19

of parallelizing the level set scheme. The current parallel narrow band construction

algorithm is discussed in Chapter 3.

2.4 The Current Cartesian Grid Method

2.4.1 Governing Equations

The incompressible Navier-Stokes equations are solved in the current work. In

non-dimensional form, this set of equations is:

∇ ∙ u�⃗ = 0 (2.5)

∂u��⃗
∂t

+ u�⃗ ∙ ∇u�⃗ = −∇p + 1
Re
∇2u�⃗ . (2.6)

Here u�⃗ is the non-dimensional velocity vector, p is non-dimensional pressure and

Re = UL
ν

 is the Reynolds number based on a characteristic velocity, U, a characteristic

length, L, and the fluid kinematic viscosity, ν, which is assumed to be constant. The

governing equations must be supplemented by a set of Dirichlet boundary conditions for

the velocity field on all domain and immersed boundaries and a divergence free initial

condition, u�⃗ o .

2.4.2 Classification of Grid Points

 The current ghost fluid method is based on a disjoint partitioning of the

computational domain into four types of grid nodes as shown in Figure 4, where a node is

classified according to the technique for which its flow variables are updated. Away from

the interface in the fluid phase, there is no difficulty applying standard finite difference

techniques to solve the Navier-Stokes equations. The grid nodes for which standard

treatment can be applied will be called fluid nodes. Immediately inside the surface, a set

of nodes called ghost nodes are populated with flow variable values using an

extrapolation technique such that a prescribed boundary condition is satisfied on the

20

surface. These nodes have a level set value such that at least one of the neighbors in the

cardinal directions has a positive level set value. By assigning a flow variable value to

this set, central difference stencils can be formed for all cells on the fluid side of the

interface.

 The partitioning of the computational nodes into ghost and fluid nodes is

sufficient to construct a ghost fluid method for stationary surfaces. In the case of moving

boundary problems, the changing of grid nodes from ghost nodes to fluid nodes has been

shown to contribute to a strong temporal oscillation in the pressure field. Seo and Mittal

[62] show that the pressure oscillation can be attributed to the introduction of a spurious

geometric volume during grid node transition. Their analysis results in an estimate of the

volume conservation error as ∆V
∆t

|1 − CFLs|. This shows that in two-dimensions the error

is proportional to ∆x2/∆t. In order to alleviate this issue, the authors implemented a

hybridized scheme where the momentum equations are solved using a ghost fluid method

while the Poisson equation is solved using a mass conserving cut-cell approach, which

results in a 6-fold reduction in the magnitude of pressure oscillations.

Taking a different approach, Luo et al. [30] attributed the source of the pressure

oscillation to the change in character of the discretization error as a grid node transition

between partition sets. While both the extrapolation method and the solution of the

governing equations may have O(∆x2) truncation error, the inconsistency in the form of

the errors leads to a temporal error which is also O(∆x2). When this error is introduced in

the source term of the Poisson equation, it becomes an O(∆x2/∆t) error, which exhibits

the same dependence on the grid spacing and time step sizes as the analysis of [62].

21

The analysis of [30] demonstrates that two steps can be taken to control pressure

oscillations. First, the CFL number a simulation is performed at can be made as close to

unity as possible while refining the grid to make ∆x2/∆t as small as possible. Second,

one can attempt to minimize the temporal discrepancy in the spatial error by smoothly

transitioning between numerical treatments. This can be effected by a hybridized

treatment where a third subset of grid nodes is introduced. In this set the flow variables

are computed according to a weighted blending of the solution of the governing equations

and a solution by an interpolation from surrounding nodes. In this work, a point is

specified to have hybridized treatment if it has a positive level set value less than √2∆x.

If a hybridized treatment is not desired, the blending coefficient is simply set to be purely

biased towards the solution of the governing equations.

During the transition from a ghost cell to a hybrid cell, the freshly created hybrid

cell does not have a valid flow history. Additionally, the cell has newly formed ghost cell

neighbors for which there is also no history. Fresh cells are characterized in terms of the

level set field by a change from negative to positive level set value between time steps.

These cells are given a pure interpolation from the surrounding cells during the solution

process. This obviates the need for a time-history of flow variables. After one time step, a

fresh cell is transitioned to a hybrid cell.

This closes the definition of the types of computational points required for the

construction of the current ghost fluid method. Table 1 lists the types of computational

nodes and their characterization in terms of the level set field. The partitioning of the

computational domain into the current classification scheme is very natural using the

22

current level set formulation. Furthermore, the level set field will be shown to lend itself

to the simplicity of the construction algorithm for the interface discretization operators.

2.4.3 Fractional Step Algorithm

In the current framework, the governing equations are solved at both fluid and

hybrid nodes. The flow variables are evolved on a hybrid collocated cell-centered grid,

where the velocity and pressure are stored at cell centers and a secondary set of mass-

conserving velocities are stored at cell faces. A four-step fractional step method [69, 70]

is implemented to decouple the velocity and pressure variables. In the first step, a

provisional intermediate velocity is computed for which the incompressibility constraint

is not explicitly enforced. A 2nd-order explicit Adams-Bashforth scheme is used for the

time-discretization of the non-linear term, while the 2nd-order semi-implicit Crank-

Nicholson method is applied to the viscous term. The resulting semi-discrete form of the

equation for the intermediate velocity, u�⃗ ∗, is

u��⃗ ∗−u��⃗ n

∆t
= −3

2
H(u�⃗ n) + 1

2
H(u�⃗ n−1) + 1

2Re
�L(u�⃗ ∗) + L(u�⃗ n)� − G(q) . (2.7)

Here, H is a discrete spatial approximation of the non-linear term, L is a spatial

approximation to the Laplacian, and G(q) is some suitable estimate of the pressure

gradient.

The second step consists of removing the estimate of the pressure gradient used in

the first step:

u�⃗ ∗∗ = u�⃗ ∗ + G(q)∆t. (2.8)

This has the effect of stabilizing the calculation by addressing the pressure-velocity

decoupling issues encountered with the use of non-staggered grids.

23

The effect of incompressibility is enforced by decomposing u�⃗ ∗∗ into the sum of

divergence-free and irrotational vector fields,

u�⃗ n+1 = u�⃗ ∗∗ − ∆t∇φ. (2.9)

A Poisson equation for the scalar potential ϕ is derived by taking the divergence of

Equation (2.9) and requiring that u�⃗ n+1 be divergence-free, giving

∇2φ = ∇∙u��⃗ ∗∗

∆t
 (2.10)

The remaining issues to be addressed are boundary conditions for each of the

steps in the algorithm, how to define q, and how to relate ϕ to pressure. It should be

emphasized that ϕ is not pressure, but is instead a purely mathematical variable that can

be related to pressure only when the discretization scheme has been chosen [71]. From

Equation (2.10), it is clear that the boundary condition for equation (2.10) must be:

∂φ
∂n

|∂Ω = (u��⃗ ∗∗−u��⃗ n+1)∙n��⃗
∆t

|∂Ω (2.11)

If one sets the boundary condition for the intermediate velocity equal to that of the

final velocity, a homogeneous Neumann condition is obtained. To maintain second order

time accuracy of the velocity field, one can select to set q to the previous time step

pressure and ϕ can then be considered an O(∆t) approximation to pressure.

2.4.4 Discretization of Operators

In the current method the solution of the Navier-Stokes equations is required at

both fluid nodes and hybrid nodes. Operators required for the solution of the Navier-

Stokes equations are discretized using standard centered finite differences. There is no

difficulty in utilizing centered differences for operator construction at hybrid nodes

because the fluid variables are defined at the neighboring interface ghost nodes which

ensure that the stencil is always properly posed. Accordingly, the Laplacian operator has

24

the standard 5-point stencil. For a fluid node P with neighboring grid nodes E, W, N, and

S in the east, west, north, and south directions, and grid spacing (ΔxP ,ΔyP), the

Laplacian operator at P is approximated as

∇2ψ|P = ψE−2ψP+ψW
ΔxP2

+ ψN−2ψP+ψS
ΔyP2

. (2.12)

The convection term has the form

∇ ∙ (u�⃗ ψ)|P = ueψe−uwψw
ΔxP

+ vnψn−usψs
ΔyP

. (2.13)

In Equation (2.13), ψi is the average of ψ to the ith face, and ui and vi are mass

conserving velocities which are stored at the faces.

2.4.5 Ghost Node Treatment

 The over-arching premise of the Ghost Fluid Method (GFM) is to extend the fluid

variables across an interface into a set of ghost nodes where they were not originally

defined such that the extension takes the desired boundary condition value at the interface

[48]. Standard discretization stencils can then be used for every fluid grid node. In the

present method, ghost nodes are used to complete discretization stencils required for

hybrid nodes. The current section describes in detail the technique applied to populate

flow variables in the ghost nodes.

To make the concept of ghost node population concrete, consider the one-

dimensional case in Figure 5 where the interface is located between grid nodes i and i+1,

where node i is in the fluid and i+1 is in the solid, such that i+1 is a ghost node in a

centered finite difference of the one-dimensional Laplace operator at node i. An arbitrary

function, ψ�(x), such as a cubic polynomial can be fit to the values of a variable ψ at grid

points i, i-1, and i-2, along with the boundary value at the interface. The extension of the

field, ψi+1
G , would occur by assigning the node the value of the polynomial at xi+1,

25

 ψ�(xi+1). The extending polynomial may be re-written in terms of the field values at the

points i, i-1, and i-2 using Lagrange polynomials. This facilitates the use of the

extrapolating polynomials for implicit operators.

If the extrapolating function is selected to be a polynomial for the one-

dimensional case, then the only parameter requiring specification is the degree of the

polynomial fit. Once this has been established the neighboring points to be included in

the extrapolation are completely determined by the location of the fluid phase and the

problem is closed. In higher dimensions the situation is not as obvious as many

extrapolation possibilities exist. Consider the two-dimensional case presented in Figure 6

where the standard five-point discretization of the Laplacian operator at grid node (i,j) is

required, but the neighboring grid point (i-1,j) is inside a solid object. The stencil branch

in the west direction is illegitimate unless a suitable GFM extrapolation is chosen to

assign a value at node (i-1,j).

Two possible extrapolation choices are shown in Figure 7 and Figure 8. In Figure

7, the extrapolation is performed in a dimension-by-dimension manner. If a neighboring

node in a cardinal direction is found to be inside the solid, a one-dimensional

extrapolating polynomial is formed using neighboring nodes in the opposite direction as

well as the boundary value. The one-dimensional approach is extremely simple to

implement even for high orders of accuracy. Gibou et. al [49, 60] have developed

numerical schemes based on direction-by-direction extrapolations with up to fourth-order

spatial truncation error for the heat and Poisson equations with Dirichlet conditions, and

Marella et al. [72] have proposed a globally second-order solver for the solution of the

26

incompressible Navier-Stokes equations. However, stability issues often accompany

attempts to use polynomials smoother than quadratic.

The use of a one-dimensional extrapolation leads to the introduction of a non-

uniqueness into the definition of the ghost value at nodes similar to (i-1,j) in Figure 6.

The stencils of both (i,j) and (i-1,j+1) use one-dimensional extrapolations to fill in

necessary ghost information at (i,j), and it is not generally possible for the two

extrapolations to be consistent. Furthermore, due to the lack of strong coupling between

grid nodes, even explicit source terms must be constructed using extrapolations, which

can require complicated code if the interface is moving during the simulation.

Presently, an alternative to the dimension-by-dimension approach is pursued

whereby a single unique extrapolation stencil is assigned to each interfacial ghost node. A

popular choice for a unique extension is to construct an extrapolating polynomial which

is fit to the value of the closest point on the interface to the interface ghost node (the

interfacial intersection, ψint in Figure 8), and the values at a set of probe points located

along the ray emanating from the boundary point along the normal direction to the

interface into the fluid (e.g. ψP1 and ψP2) [25, 50]. Because the probe points are located

at arbitrary locations, their values must then be interpolated from surrounding nodes.

Tseng and Ferziger [25] and Mittal et al. [50] implement this type of approach by placing

a single probe point at a position located symmetrically about the interface along the line

connecting the ghost node and the closest interface point (Figure 8). This is the approach

adopted in the current work.

Once the scheme for assigning probe values is defined, it is simple to apply

various types of boundary conditions. In the case of Dirichlet boundary conditions, the

27

value of the ghost point is found in terms of the probe value, ψP, and boundary condition,

ψint, according to:

 ψG = 2ψint − ψP, (2.14)

Neumann conditions are applied using a second order central difference about the

boundary intersection point:

ψG = ψP − ∆l ∂ψ
∂n

|int, (2.15)

where ∂ψ
∂n

|int is the value of the normal derivative of ψ at the interfacial intersection, and

∆l is the distance between the probe and ghost points.

The remaining part of the numerical scheme requiring specification is how to

assign values to probe points. Tseng and Ferziger [25] utilize the two closest grid points

to the ghost node that are in the fluid as well the value at the boundary intersection to

establish an interpolating polynomial of the form

ψ�(x, y) = a + bx + cy. (2.16)

The probe value is then taken to be the value of the interpolating polynomial at the probe

location, (xP,yP). Mittal et al. [50] instead find the four closest nodes to the probe

location, regardless of whether they are in the solid or not. By construction, the nodes

found under such a criteria must be either fluid nodes or other ghost nodes. A polynomial

of the form

ψ�(x, y) = a + bx + cy + dxy (2.17)

is then constructed and ψP = ψ�(xP, yP).

In the current work, required probe values are interpolated using a weighted least-

squares approach, which allows for seamless incorporation of both Dirichlet as well as

Neumann conditions into a functional fit at the probe point. A multi-dimensional

28

polynomial of M basis functions is constructed from a set of N cloud points surrounding

the probe point. For clarity, the following discussion will focus on a two-dimensional

quadratic polynomial in the relative coordinates,

ψ�(x, y) = a + bx� + cy� + dx�y� + ex�2 + fy�2, (2.18)

x� = (x − xP) h⁄ (2.19)

y� = (y − yP) h⁄ (2.20)

h = 0.7�∑ (xi − xP)2N
i=1 + (yi − yP)2 (2.21)

Here, (xi, yi) are the coordinates of the ith cloud point, and h is a measure of the cloud

width. The coordinate differences are scaled with h to ensure numerical stability in the

situation where points are closely clustered about the probe point. In this case M = 6.

Applying a least-squares procedure leads to a matrix equation of the form:

Aa�⃗ = ψ��⃗ . (2.22)

Here, A is an NxM coefficient matrix dependent on the coordinates of the cloud points, a�⃗

is the vector of polynomial coefficients of length M, and ψ��⃗ is a vector of field variable or

derivative values on the set of cloud points. Both sides of Equation (2.22) can be

modified by a weighting function which ensures that the points closets to the probe point

are given the largest contribution to determining the expansion coefficients. The

weighting function, Wi, is taken to be a Gaussian function of coordinate differences:

Wi = e−��x
i−xP�

2
+�yi−yP)�

2
�/h2. (2.23)

To carry out a general discussion, consider a set of cloud points where the value

of ψ is specified at all cloud points except one, where the value of the normal derivative,

∂ψ
∂n

, is specified instead. Let this cloud point be labeled as the first cloud point, with all

29

other cloud points being labeled 2 through N. A set of N equations can be generated by

applying the right-hand side of Equation (2.18) at the locations of the cloud points and

setting the result equal to the supplied cloud variable value. This procedure gives rise to

the matrix system

⎣
⎢
⎢
⎡ 0 W1nx W1ny W1(nxy�1 + nyx�1) 2W1x�1 2W1y�1

W2 W2x�2 W2y�2 W2x�2y�2 W2x�22 W2y�22
⋮

WN

⋮
WNx�N

⋮
WNy�N

⋮
WNx�Ny�N

⋮
WNy�N2

⋮
WNy�N2 ⎦

⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
a
b
c
d
e
f ⎦
⎥
⎥
⎥
⎤

=

 �

W1 ∂ψ ∂n⁄ 1
W2ψ2
⋮

WNψN

�, (2.24)

or more briefly,

Aclouda�⃗ = ψ��⃗ . (2.25)

In general, this system is rectangular as the number of cloud points can be larger

than the number of expansion coefficients that need to be determined to specify the

polynomial fit. In the case of a rectangular matrix, one must solve the resultant linear

system by computing the pseudo-inverse of A, A+. For example, any mxn matrix, A, has

a singular value decomposition (SVD),

A = UΣVT, (2.26)

where U and V are mxm and nxn orthogonal matrices respectively, and Σ is an mxn

diagonal matrix with m non-negative diagonal values. Due to the structure of this

decomposition, the pseudo-inverse, A+, can be found quite easily:

A+ = VΣ+UT. (2.27)

30

Being diagonal, the pseudo-inverse of Σ is computed by taking the reciprocal of the

diagonal entries. If any diagonal term is zero, the reciprocal of the term is set to zero.

Alternatively, a QR factorization can be used, where A is decomposed as

A = Q �R
0�. (2.28)

Here, Q is an mxm orthogonal matrix constructed from Householder reflectors and R is

an nxn upper triangular matrix R. Exploiting the structure of this decomposition results in

a pseudo-inverse of the form

A+ = R−1QT. (2.29)

As the inverse of an upper triangular matrix is upper triangular, specialized algorithms for

the product of the matrices on the right-hand side of Equation (2.29) can be used to

increase efficiency. Finally, a third approach to invert Equation (2.25) is based on the

normal equation form of the rectangular matrix problem. Here, both sides of the equation

are pre-multiplied by Acloud
T , which results in a square system. In this case,

A+ = (ATA)−1AT. (2.30)

Because the pseudo-inverse is identical to the inverse for a square matrix, we can

generalize the solution for the polynomial expansion coefficients in terms of the pseudo-

inverse. The expansion coefficients can be determined as

a�⃗ = Acloud
+ ψ��⃗ . (2.31)

For the current scheme, only the value of ψ at the probe point is required. This

corresponds to the first element of a�⃗ in Equation (2.31). Therefore, the value of ψ at the

probe point is computed as

ψP = ∑ A1i
+ ψi

N
i=1 . (2.32)

31

The set of coefficients (A11
+ , A12

+ , … , A1N
+) are pre-computed and stored for each interface

ghost node at the start of each time-step. The gradient of ψ can also be recovered from

the same pseudo-inverse as

∇ψP = ∑ A2i
+ ψi

N
i=1 e�⃗ x + ∑ A3i

+ ψi
N
i=1 e�⃗ y + ∑ A4i

+ ψi
N
i=1 e�⃗ z (2.33)

 What remains is how to specify the set of cloud points from which the least-

squares fit is constructed. For a probe point associated with a ghost cell the procedure is

as follows. First, the grid points within a specified radius of the probe location are

determined using a fast search algorithm. If the potential cloud point is a ghost node it is

replaced in the cloud by the projection of the ghost node onto the interface Figure 9, and

the boundary value at the projected interfacial location is used in the right hand side of

Equation (2.25). Finding the interfacial projection is easily accomplished by using the

normal distance and normal vectors generated by the level set field.

In the case of thin structures this paring procedure may not be restrictive enough,

for if the cloud radius is large it is possible that points from opposite sides of the object

may be specified as a single cloud. To ensure that the cloud is composed of points from a

consistent side of the interface, normal vectors constructed from the level set field are

used as criteria to discard illegitimate cloud points. In practice, this is accomplished by

discarding cloud points with normal vectors that have a negative dot product with the

normal vector of the ghost point.

2.4.6 Hybrid Node Treatment

In order to update the fluid variables at hybrid nodes, we follow a procedure

similar to Luo et al [30]. During the solution of the momentum and Poisson equations of

the fractional step method, hybrid cells are updated as a weighted average of the solution

32

of the governing equations and the solution obtained by interpolating from a set of nearby

grid nodes in the fluid. The correction of the velocity is then carried out in the standard

manner. The current approach is different from that of [30] in two ways. First, in [30]

hybridization was applied to a discrete forcing method, whereas this work focuses on a

sharp interface approach, where the numerical operators are modified. Second, the

current work uses least-squares fitting to modify the numerical operators instead of

standard bi-linear interpolants.

The construction of the blending weight is determined by the level set value of the

hybrid grid point and a generalized definition for any grid point with positive level set

value is

𝛼𝑃 = 𝑀𝐴𝑋(1 − 𝜙𝑃
√2∆𝑥

, 0). (2.34)

This definition has the property that 𝛼𝑃 → 0 as the grid point moves away from the

interface and into the fluid and 𝛼𝑃 → 1 as the grid point approaches the interface.

Denoting (𝑢�⃗ 𝑃∗)𝑁𝑆 and (𝑢�⃗ 𝑃∗)𝑖𝑛𝑡 as approximations of the intermediate velocity

obtained by solving the governing equations or applying an interpolation from

surrounding nodes, the hybridized algorithm computes the variables at a hybrid node P as

𝑢�⃗ 𝑃∗ = (1 − 𝛼𝑃)(𝑢�⃗ 𝑃∗)𝑁𝑆 + 𝛼𝑃(𝑢�⃗ 𝑃∗)𝑖𝑛𝑡 (2.35)

The discrete form of the momentum equation at a node P can be written as

𝑢�⃗ 𝑃∗ + ∑ 𝐴𝑖𝑢��⃗
∗
𝑢�⃗ 𝑖∗𝑖≠𝑃 = 𝑅�⃗ 𝑃𝑢��⃗

∗. (2.36)

Here, 𝐴𝑖𝑢��⃗
∗
 are the off-diagonal discretization coefficients of the momentum equation

which are only non-zero in a compact region surrounding P depending on the

discretization scheme which have been re-scaled such that 𝐴𝑃𝑢��⃗
∗ is unity. 𝑅�⃗ 𝑃𝑢��⃗

∗ contains the

explicit contributions to the momentum and equations which has been re-scaled in a

33

manner consistent with the left-hand side of the equation. Similarly, an interpolation for

the intermediate velocity at P can be written as

𝑢�⃗ 𝑃∗ = ∑ 𝛽𝑗𝑢��⃗
∗
𝑢�⃗ 𝑗∗𝑗≠𝑃 , (2.37)

where the 𝛽𝑗𝑢��⃗
∗
are interpolation weights which are non-zero over a compact set of

neighboring grid points. Combining the two approximations for the intermediate velocity

according to Equation (2.36) results in a hybrid equation for the intermediate velocity,

𝑢�⃗ 𝑃∗ + (1 − 𝛼𝑃)∑ 𝐴𝑖𝑢��⃗
∗
𝑢�⃗ 𝑖∗𝑖≠𝑃 − 𝛼𝑃 ∑ 𝛽𝑗𝑢��⃗

∗
𝑢�⃗ 𝑗∗𝑗≠𝑃 = (1 − 𝛼𝑃)𝑅�⃗ 𝑃𝑢��⃗

∗. (2.38)

Similarly, the blending equation for updating pressure in hybrid cells is

𝑝𝑃 + (1 − 𝛼𝑃)∑ 𝐴𝑖
𝑝𝑝𝑖𝑖≠𝑃 − 𝛼𝑃 ∑ 𝛽𝑗

𝑝𝑝𝑗𝑗≠𝑃 = (1 − 𝛼𝑃)𝑅�⃗ 𝑃
𝑝. (2.39)

 The stencil for the interpolation component of the hybridized treatment is formed

in a very similar manner to the formation of extrapolations for ghost cells. The least-

squares fit is computed at the hybrid point directly instead of at a probe location. The

structure of the least-squares cloud for hybrid cells is shown as the gray shaded area in

Figure 10. First, all grid points within a specified radius are found. Then, any potential

cloud cell located in the solid is replaced with the nearest point on the boundary and the

boundary condition at that location.

 During the transition from ghost to hybrid status, the newly formed hybrid node

will not have a valid flow history. Therefore, the explicit source term in Equation (2.36)

cannot be properly formulated. The treatment of freshly-cleared cells is handled very

naturally in the current hybridized formulation. The values at fresh cells are computed by

simply setting the blending coefficient 𝛼𝑃 to 1. Due to the purely implicit nature of the

Poisson equation, no special treatment is required beyond the solution of the momentum

equations.

34

2.4.7 Surface Vorticity and Force Calculation

The calculation of surface quantities in sharp interface methods is not a trivial

task. The stress and vorticity fields are derivatives of the velocity field, which tend to

suffer from the amplification of numerical noise. The computation of surface derivatives

at arbitrary locations on the boundary is complicated by the lack of regular computational

stencils, which adversely affects accuracy and introduces noise into the discrete field,

especially in cases where derivatives have large magnitudes, such as in the boundary

layers found in high Reynolds number flows. While this may be acceptable for tasks

such as post-processing and visualization, there are numerical formulations that require

the specification of higher-order derivatives of the velocity field on the immersed surface.

A relevant example is the consistent treatment of pressure boundary conditions in

velocity-correction methods, where the correct pressure boundary condition to be applied

at a stationary immersed surface is [73]

𝜕𝑝
𝜕𝑛

= −𝜈(∇ × 𝜔��⃗) ∙ 𝑛�⃗ . (2.40)

In order for the numerically stability to be ensured, the computation of the right-hand side

of Equation (2.41) should be lead to smooth results.

To address these challenges in a unified framework, surface quantities are

evaluated using a least-squares procedure similar to that utilized in the construction of the

current GFM method. A multidimensional polynomial of arbitrary order is fit to a set of

nearest fluid, hybrid, and ghost grid points surrounding the interfacial location where the

surface quantity is required. By specifying a greater number of cloud points than the

number of points required to compute a unique polynomial fit, the least-squares approach

provides high accuracy as well as an implicit filtering effect. Because the least-squares

35

approach operates on data in cloud form with no structure requirement, it is very robust to

the configuration of the embedded boundary with respect to the underlying computational

grid. Additionally, multiple quantities can be obtained at the same point from one

solution of the least-squares problem. These considerations in concert make the current

least-squares approach very attractive in obtaining values of variables at surfaces as well

as computing hydrodynamic forces on embedded objects.

The process of computing surface quantities starts from a quadratic least-squares

polynomial fit about the interfacial location (xint,yint,zint) of the form:

𝜓 = 𝑎𝜓 + 𝑏𝜓𝑥𝑟 + 𝑐𝜓𝑦𝑟 + 𝑑𝜓𝑧𝑟 + 𝑒𝜓𝑥𝑟𝑦𝑟

 +𝑓𝜓𝑥𝑟𝑧𝑟+𝑔𝜓𝑦𝑟𝑧𝑟 + ℎ𝜓𝑥𝑟2 + 𝑖𝜓𝑦𝑟2 + 𝑗𝜓𝑧𝑟2 (2.41)

𝑥𝑟 = 𝑥 − 𝑥𝑖𝑛𝑡 (2.42)

𝑦𝑟 = 𝑦 − 𝑦𝑖𝑛𝑡 (2.43)

𝑧𝑟 = 𝑧 − 𝑧𝑖𝑛𝑡 (2.44)

The least-squares problem is set up and solved using the same procedure applied during

the population of ghost and hybrid cells. A unique set of expansion coefficients can be

determined from a set of 10 cloud points. However, to obtain a smooth field and avoid

numerical stability issues a larger set of points is generally used. Once the expansion

coefficients are available, the gradient of a field at the interfacial location is found by

taking the analytical gradient of the expansion (2.40), and subsequently setting all relative

coordinates to zero, which leads to the simple expression

∇𝜓 = 𝑏𝜓𝑒𝑥 + 𝑐𝜓𝑒𝑦 + 𝑑𝜓𝑒𝑧. (2.45)

Applying a polynomial fit to each component of the velocity and denoting the

leading coefficients of the expansions as (au,bu,cu,du), (av,bv,cv,dv), (aw,bw,cw,dw),

36

respectively, an expression for the vorticity vector at the surface in terms of expansion

coefficients is

𝜔��⃗ |𝑆 = (𝑏𝑤 − 𝑐𝑣)𝑒𝑥 + (𝑐𝑢 − 𝑎𝑤)𝑒𝑦 +(𝑏𝑣 − 𝑐𝑢)𝑒𝑧. (2.46)

Similarly, upon determining expansion coefficients of the pressure, (ap,bp,cp,dp),

the stress tensor at the interfacial location can be formed as:

𝑇|𝑆 = −𝑝|𝑆𝐼 + 2𝜇𝐷|𝑆 = −𝑎𝑝𝐼 + �
2𝜇𝑏𝑢 𝜇(𝑐𝑢 + 𝑏𝑣) 𝜇(𝑑𝑢 + 𝑏𝑤)

𝜇(𝑐𝑢 + 𝑏𝑣) 2𝜇𝑏𝑣 𝜇(𝑐𝑤 + 𝑑𝑣)
𝜇(𝑑𝑢 + 𝑏𝑤) 𝜇(𝑐𝑤 + 𝑑𝑣) 2𝜇𝑏𝑤

�,

(2.47)

where 𝑝|𝑆 is the surface pressure, 𝐷 = 1
2

(∇u�⃗ + ∇u�⃗ 𝑇) is the rate of deformation tensor,

and 𝐼 is the 3x3 identity tensor.

The lift and drag forces exerted on an object are computed by numerically

integrating the stress tensor over a discretization of the object surface, which is

approximated as a set of planar elements of arbitrary shape. The surface elements are

constructed from the level set representation of the object using the Marching Cubes

method [74]. In this method, each grid cell for which a neighboring grid cell has an

opposite level set sign is checked to see if the zero level set contour cuts through the grid

cell volume in any orientation by comparing the sign of the level set field at the corners

of the grid cell volume. 15 of the 16 basic configurations of the planar cut inside the cell

are shown in Figure 11, with the remaining one being the case where all cell vertices

have negative level set value. In order to efficiently determine which of the 256 overall

possible configurations is at hand, a hexadecimal look up table is used to identify the case

based on which corners of the grid cell volume have negative level set values.

37

Using this information, a triangulation of the planar surface is obtained from a

second look-up table. Once a triangulation is established, it is easy to compute the

geometric quantities required to evaluate a midpoint integration of the force on the object,

which takes the form:

𝐹⃗ = −∯𝑇 ∙ 𝑛�⃗ 𝑑𝐴 ≅ −∑ 𝑇 ∙ 𝑛�⃗ |𝑖𝐴𝑖
𝑁𝑝
𝑖=1 . (2.48)

Here, 𝐹⃗ is the hydrodynamic force vector, and 𝑇 ∙ 𝑛�⃗ |𝑖 is the projection of the

stress tensor along the normal at the centroid of a patch of the discretized surface, and

𝐴𝑖is the patch area.

2.5 Validation of the Current Interface Treatment

2.5.1 Poisson Equation with Dirichlet Conditions

In this section, we use the method of manufactured solutions to test the accuracy

of the current ghost fluid approach. This procedure can be used to assess the accuracy of

the method for a range of immersed boundary configurations. To that end, consider the

periodic function

𝜙(𝑥,𝑦) = sin 3𝜋𝑥 sin 3𝜋𝑦. (2.49)

The method of manufactured solutions implies that this function can be regarded

as the solution of the Poisson equation,

∇2𝜙 = −18𝜋2 sin 3𝜋𝑥 sin 3𝜋𝑦, (2.50)

supplemented by Dirichlet boundary conditions derived from the desired solution. We

apply the current ghost fluid method to solve the manufactured Poisson equation for two

model problems that demonstrate accuracy of the approach for two embedded shapes: a

circle of unit diameter and a nine-pointed star for which the surface is parametrized

according to:

38

𝑥(𝜃) = 1 + (0.5 + 0.2 sin 9𝜃) cos 9𝜃 (2.51)

𝑦(𝜃) = 1 + (0.5 + 0.2 sin 9𝜃) sin 9𝜃. (2.52)

Both geometries are embedded at the center of a 2x2 domain and the solution to

the Poisson equation is computed in the region of the domain exterior to the embedded

curve. The boundary conditions on the embedded boundary and domain boundaries are

specified according to Equation (2.49).

First, the standard ghost fluid method is applied to solve the Poisson equation.

This is accomplished by setting α to zero in the hybrid cells. The probe points of the

ghost fluid treatment are interpolated using a quadratic polynomial fit, where the least-

squares cloud has a radius of 2∆x. Numerical experimentation showed that the solution is

insensitive to the cloud radius for this test case. The contours of the solution for the two

boundary configurations are shown in Figure 12. The solution contours are smooth for

both cases despite the strong concave corner features of the star boundary. To assess the

order of accuracy of the ghost fluid method, the solution is obtained on five grids where

the grids were each successive mesh has twice the resolution. In Figure 13, the maximum

error versus grid spacing is displayed for both the circular and star-shaped boundaries.

The convergence results are shown in Table 2. The convergence behavior for the circular

boundary is very smooth, showing a consistent order of accuracy of 2.00. The

convergence for the star-shaped boundary has a less regular pattern, but the case

demonstrates an average order of accuracy of 1.95. For both geometries, the obtained

order of accuracy very closely matches the nominal order of 2.

We examine the effect of the hybridized treatment on the accuracy of the ghost

fluid method by again computing the solution to Equation (2.50), but this time we specify

39

the blending weight using the level set-based criteria (Equation (2.34)). The results of the

accuracy analysis are compared with the results obtained from the ghost fluid treatment

without hybridization in Table 3. It is clear that for the circular embedded boundary, in

the case of Dirichlet conditions, the hybridization has no significant effect on the

maximum error. The L2-error in the solution is increased, but only by a maximum of 7

percent. For the solution on the star-shaped domain, the situation is much different. The

hybridization actually makes the maximum error decrease by nearly a factor of 2.

Therefore, the effect of hybridization cannot be predicted to simply decrease accuracy, as

it has just been shown that in a complicated geometry with strongly concave sections, the

hybridization increases the accuracy of the computation.

2.5.2 Poisson Equation with Neumann Conditions

We now move forward to consider Neumann conditions prescribed on the

immersed boundary. Consider the Poisson problem

∇2𝜙 = −𝑟2 sin 2θ, (2.53)

which is to be solved on a domain defined by the region between two concentric circles

of radius R1 = 1.0 and R2 = 1.5. The equation is supplemented with Neumann conditions

prescribed on the concentric circles,

𝜕𝜙
𝜕𝑟

(𝑅1,𝜃) = 0, 𝜕𝜙
𝜕𝑟

(𝑅2,𝜃) = 0. (2.54)

The analytical solution to this problem is

𝜙 = 𝑐 − 𝑟4

12
sin 2𝜃 + 1

6
�𝑅1

6−𝑅26

𝑅14−𝑅24
� 𝑟2 sin 2𝜃 + 1

6𝑟2
�𝑅1

2−𝑅22

𝑅14−𝑅24
�𝑅14𝑅24sin 2𝜃. (2.55)

The solution is unique up to a constant, c, as the null space of the Poisson operator

contains the constant vector. In this work, a unique solution is specified by requiring the

solution to have an average of zero.

40

 The solution to the Neumann problem is obtained with and without hybridized

treatment. Again, a quadratic polynomial fit is used for the least-squares treatment, and

the cloud radius is set to 2∆x. The solution contours are shown in Figure 14, and the

maximum errors for the two solutions are compared in Figure 15. In Figure 14, it is seen

that the contours smoothly capture the zero normal derivative condition on both the

convex inner boundary as well as the concave outer boundary. The error analysis of

Figure 15 demonstrates second-order accuracy when the current ghost fluid method is

applied to Poisson problems with Neumann conditions. The standard ghost fluid method

obtains a solution with error that is approximately 4 times smaller than that of the

hybridized ghost fluid method. However, the hybridized treatment is still second-order

accurate.

2.5.3 In-line Oscillating Cylinder

In this section, the properties of the current numerical scheme in application to

moving boundary problems are assessed for the standard and hybrid formulations. The

main focus of this investigation is a characterization of the spurious oscillation of the

pressure field for both the standard and hybridized schemes. In formulating the numerical

scheme, there are several choices in how to apply hybridization to the fractional step

algorithm. One could apply hybridization to both the computation of the intermediate

velocity and the pressure, or alternatively, one could hybridize a single step in the

algorithm. We seek to establish the combination which has the maximum pressure

oscillation suppression ability and to determine the magnitude of the divergence which is

introduced by such a treatment. We then demonstrate the behavior of the standard and

optimal hybridized schemes with variation in grid spacing and time-step size.

41

To that end, we consider the flow past a cylinder of unit diameter which is under-

going inline oscillatory motion. The cylinder is initially located at the center of a 4x4

domain. A uniform velocity of 1.0 is specified at the west, north, and south boundaries,

and a convective outflow condition is specified at the east boundary. The cylinder’s

center of mass and velocity are determined according to,

𝑥𝑐(𝑡) = 𝑥𝑐(0) + 𝑋𝑜 sin(2𝜋𝑓𝑡). (2.56)

𝑢𝑐(𝑡) = 2𝜋𝑓𝑋𝑜 sin(2𝜋𝑓𝑡) (2.57)

The oscillation amplitude, Xo, and the frequency of oscillation, f, are set to 0.15 and 0.2,

respectively. The Reynolds number, based on the cylinder diameter, D, and the inlet

velocity, U, is 100.

 In order to determine which hybridization strategy is the most effective at

suppressing pressure oscillations, we perform a set of simulations with a fixed grid

spacing and CFL number while applying the set of combinations of hybridization to the

fractional step algorithm in turn. The grid spacing is set to Δ𝑥 = 1/16, and the CFL

number is fixed at 0.1. The combination of large grid-spacing and small time-step sizes

should lead to severe pressure fluctuations. The combinations of hybridization tested are:

1) no hybridization, 2) hybridization of the momentum equation, 3) hybridization of the

Poisson equation, and 4) hybridization of both the momentum and Poisson equations.

 Figure 16 shows the time history of the drag force as well as the time history of

the average and maximum divergence in the solution domain for each hybridization

strategy. As can be seen from Figure 16.a, the standard ghost fluid formulation leads to

the formation of strong pressure oscillations with the largest fluctuations biased towards

the convex side of the drag curve. The bias of the fluctuations is due to the spurious

42

volume introduced by freshly-cleared cells. When a cell transitions from a ghost to hybrid

point, the volume associated with the source term in the Poisson equation is that of the

whole cell, which is larger than the true portion of the hybrid cell located in the fluid.

This causes a sudden increase in pressure in the freshly-cleared cells, which leads to a

sudden pressure force in a non-physical direction. The biased nature of the pressure

fluctuations, as well as their irregular pattern means that the true force curve cannot be

extracted by smoothing the noisy results. The maximum and average divergence are of

O(10-2-10-3) and O(10-4-10-5). The average divergence history is very smooth when the

cylinder is moving against the fluid (t = 2-5), but becomes extremely noisy when the

cylinder moves with the fluid (t = 5-7). This is most likely due to the fact that the velocity

on the downstream side of the cylinder is of much lower magnitude than that of the

upstream side, such that fresh cell population occurs over a smoother field.

 Next, hybridization is applied solely to the momentum and Poisson equations in

turn. From Figure 16.b, it is observed that hybridizing the momentum equation

redistributes the force fluctuations to be more symmetric during the times when the

cylinder is moving against the uniform far-field condition, while decreasing the

magnitude of fluctuations while the cylinder is moving with the fluid. The maximum

divergence is slightly lowered, but also becomes more irregular in time, as does the

average divergence. The hybridization of the Poisson equation (Figure 16.c) reduces the

magnitude of the force fluctuations by nearly a factor of 4 as compared to the standard

ghost fluid method. However, the directional bias of the fluctuations remains, and in stark

contrast to applying hybridization to the momentum equation, in the current case, the

maximum divergence is now O(1).

43

 Finally, we investigate performing hybridization in both the momentum and

Poisson equations. The results are shown in Figure 16.d. It is observed that the

fluctuations are further reduced and less biased than the results of hybridizing the Poisson

equation alone. The maximum divergence is still markedly larger than the standard ghost

fluid approach, but is nearly half that obtained by hybridizing the Poisson equation alone.

The magnitudes of the average divergence are fairly insensitive to the hybridization

scheme.

 Having established that the hybridization of both the momentum and Poisson

equations leads to the strongest suppression of force fluctuations, we now analyze the

dependence of the standard approach and optimal hybridized approach on grid spacing

and time-step sizes. First, the problem is simulated with a fixed CFL number of 0.1, and

grid spacings of Δ𝑥 = 1/16, 1/32, and 1/64 for both the standard ghost fluid approach and

the optimal hybridized method. The drag force curves are plotted in Figure 17, where the

results of the standard method are shown on the left, and the hybridized method results

are given on the right. Both approaches experience a significant suppression of the

pressure oscillations as the grid spacing is decreased, and both approaches are converging

to the same drag curve. The hybridized approach has significantly smaller oscillations at

all grid spacings. The oscillation amplitude of the standard approach on the finest grid

spacing is comparable to that of the hybridized method results on the coarsest grid

spacing.

The procedure is repeated to examine the dependence of the force fluctuations on

time-step size. The problem is simulated with a fixed grid spacing of dx = 1/16, while the

CFL = 0.1, 0.2, and 0.4. The results are shown in Figure 18. Again, the numerical

44

oscillations of the hybridized approach are far smaller than those of the standard

approach. The current numerical experimentation indicates that the maximum divergence

produced by the hybridized approach is insensitive to grid spacing or time-step size.

2.6 Conclusion

 In the current chapter, the details of the numerical scheme have been described.

A novel ghost fluid method has been constructed where least-squares fitting is utilized to

extend flow variable values into a set of ghost grid nodes inside solid objects. The

extrapolating fields satisfy the boundary condition on the solid surface in multiple

locations thereby mores strongly enforcing the boundary condition in a discrete fashion.

The interface treatment was implemented in the context of a four-step fractional step

method. Additionally, hybridization was incorporated into the interface treatment in order

to alleviate the strong artificial oscillations in the pressure field associated with moving

objects. This was accomplished by constructing a set of grid nodes adjacent to the solid

surface and inside the fluid where the flow variable values are updated by a weighted

average of solutions from the governing equations and interpolation. The application of

this hybridized approach to the various steps of the fractional step algorithm was

investigated. It was determined that applying hybridization to both the momentum and

Poisson equations lead to the strongest suppression of artificial force fluctuations.

However, this approach also leads to a large divergence around the interface. It has been

established that this divergence is localized to the interface, and that the average

divergence in the domain is of an acceptable magnitude.

45

Table 1 The level set criteria for the four types of computational points in the
hybridized ghost fluid method.

Grid Point Type Level Set Condition

Fluid Node 𝜙(𝑥⃗𝑃) > √2Δ𝑥

Ghost Node ∃ 𝑥⃗𝑛𝑏𝑟: 𝜙(𝑥⃗𝑃)𝜙(𝑥⃗𝑛𝑏𝑟) < 0

Hybrid Node 0 < 𝜙(𝑥⃗𝑃) ≤ √2Δ𝑥

Fresh Node 𝜙(𝑥⃗𝑃𝑛+1) > 0; 𝜙(𝑥⃗𝑃𝑛)𝜙(𝑥⃗𝑃𝑛+1) < 0

46

Table 2 Accuracy analysis of the solution of Equation (2.49) for a domain with an
embedded circle and an embedded nine-pointed star.

 circle nine-pointed star

∆x ε∞ order ε∞ order

0.04 4.80x10-4 ---- 8.12X10-4 ----

0.02 1.23x10-4 1.96 2.23X10-4 1.86

0.01 3.08x10-5 2.00 4.74X10-5 2.23

0.005 7.71x10-6 2.00 1.38X10-5 1.78

0.0025 1.93x10-6 2.00 3.61X10-6 1.93

Table 3 A comparison of the accuracy of the current ghost fluid method with and without
hybridization for the embedded boundary shapes detailed in Table 2.

 circle nine-pointed star

∆x ε∞ (α=0) ε∞ (α≠0) ε∞ (α=0) (α≠0)

0.04 4.80x10-4 4.84x10-4 8.12X10-4 4.84x10-4

0.02 1.23x10-4 1.23x10-4 2.23X10-4 1.23x10-4

0.01 3.08x10-5 3.08x10-5 4.74X10-5 3.08x10-5

0.005 7.71x10-6 7.71x10-6 1.38X10-5 7.79x10-6

0.0025 1.93x10-6 1.93x10-6 3.61X10-6 1.93x10-6

47

Figure 4 A depiction of the character of each of the types of grid nodes in the current
ghost fluid method. Fluid nodes are updated by solving the Navier-Stokes equations,
while ghost nodes are given values by boundary condition preserving extrapolations.
Values at hybrid nodes are computed by a weighted average of interpolations and
solutions of the Navier-Stokes equations.

48

Figure 5 A one-dimensional example of the concept of a ghost fluid method. An
extrapolation fit to values at the interface and neighboring grid nodes in the fluid is used
to populate the required value in the solid.

49

Figure 6 A depiction of the discretization stencil for a grid node adjacent to a solid object.
In this case, the west neighbor of (i,j) is in the solid phase, making the Laplacian operator
ill-posed. The concept of a ghost fluid method is to extend the flow field to nodes similar
to (i,j) such that the boundary condition on the solid surface is satisfied.

50

Figure 7 A depiction of a one-dimensional extrapolation ghost population approach. In
this approach, ghosts are assigned values by fitting an extrapolating polynomial to the
values at the interface and neighbor grid nodes in a Cartesian direction.

51

Figure 8 A schematic of a normal probe ghost fluid method. Ghosts are assigned values
by fitting an extrapolating polynomial along the direction normal to the interface. The
interface value at the normal intersection of the solid surface and the values at a set of
probe points are used to construct the extrapolating polynomial. Probe points are located
at arbitrary locations and therefore must be interpolated from surrounding grid nodes.

52

Figure 9 A schematic of the current construction of the least-squares cloud used to
interpolate the value at a probe point for ghost cell population. A fast search algorithm is
used to identify grid points in the neighborhood of the probe location. Then, any grid
node which has been found which is in the solid is replaced by the boundary condition at
the closest point on the interface (open white circles). The ghost node is excluded from
the cloud.

53

Figure 10 A schematic of the current construction of the least-squares cloud used to
interpolate the value at a probe point for hybrid cell population. A fast search algorithm is
used to identify grid points in the neighborhood of the probe location. Any grid node
which has been found which is in the solid is replaced by the boundary condition at the
closest point on the interface (open white circles). The hybrid node is excluded from the
cloud.

54

Figure 11 The 16 standard configurations of the Marching Cubes algorithm [74]. The
intersection of an isocontour with the edges of a computational cell leads to arbitrary
polygonal shapes. Marching cubes efficiently determines the shape from a hexadecimal
lookup table using the set of cut edges.

55

Figure 12 Contours of the solution of Equation (2.49) for a domain with an embedded
circle (left) and a domain with an embedded nine-pointed star (right). The current ghost
fluid method produces smooth accurate contours even for the highly concave region of
the star case.

Figure 13 Error analysis of the solution of Equation (2.49) in the L∞-norm for a domain
with an embedded circle (circles) and an embedded nine-pointed star (squares). The
maximum error is computed on 5 grids with a mesh refinement ratio of two. The solid
black line shows a slope of 2 for comparison.

56

Figure 14 Solution contours for a Neumann problem on concentric circles. The solution
smoothly captures the zero normal derivative condition on the concave and convex
boundaries.

Figure 15 Error analysis of the solution of Equation (2.52) in the L∞-norm for the
standard (circles) and hybridized (squares) ghost fluid method. The solid black line
shows a slope of 2 for comparison.

57

Figure 16 Time histories of drag force (left) and divergence (right) for an oscillating
inline cylinder where the ghost fluid method has (a) no hybridization, (b) hybridization of
the momentum equation, (c) hybridization of the Poisson equation, and (d) hybridization
of both the momentum and Poisson equations. The maximum divergence is denoted by
the solid black line, while the average divergence is represented by the dashed line.

(a)

(b)

(c)

(d)

58

Figure 17 Time histories of drag force for an oscillating inline cylinder solved with the
standard ghost fluid method (left) and the optimal hybridized method (right) for a CFL
number of 0.1 and a grid spacing of (a) dx = 1/16, (b) dx = 1/32, and (c) dx = 1/64.

(c)

(a)

(b)

59

Figure 18 Time histories of drag force for an oscillating inline cylinder solved with the
standard ghost fluid method (left) and the optimal hybridized method (right) for a grid
spacing of dx = 1/16 and (a) CFL = 0.1 (b) CFL = 0.2, and (c) CFL = 0.4.

(c)

(a)

(b)

60

CHAPTER 3

PARALLEL ADAPTIVE FRAMEWORK

3.1 Overview of the Current Framework

 The focus of Chapter 3 is the development of an efficient and user-friendly

framework which enhances the applicability of the sharp-interface Cartesian grid method

formulated in Chapter 2 to computationally intensive moving boundary problems. The

framework developed in this thesis is manifested in the pELAFINT3D simulation

package. pELAFINT3D is a Fortran-based software package which efficiently solves

moving boundary problems by utilizing the current sharp-interface method in conjunction

with a partitioned and pruned Cartesian mesh which is enriched with adaptive octree-

based grid refinement. The mesh adapts to the flow physics as well as to the motion of

any embedded geometry. Mesh pruning occurs in regions that have been identified as

extraneous to the computation, such as the interior of solid objects. This significantly

reduces the memory foot print of pELAFINT3D in the case of tortuous tube-like

geometries. This greatly enhances the applicability of the pELAFINT3D to certain

cardiovascular systems.

Significant flexibility is gained in the pELAFINT3D package by the choice of

representing geometries as level set fields. The implicit nature of level sets allows

pELAFINT3D to handle strong topological changes in boundary configurations such as

merging and pinching off in a unified fashion. The level set representation also simplifies

several operations such as the construction of sharp-interface discretization operators.

The level set representation is a useful indicator function in mesh refinement and

61

trimming operations. Additionally, as will be seen in Chapter 6, level set representations

provide a powerful connection to the methods of image analysis, which allows for the

formulation of a novel image to computation technique.

 The basic operation of the current algorithm is demonstrated in Figure 19. The

complex geometry for which the flow is to be computed is shown in Figure 19(a). In this

case, the geometry is an aortic valve which is described by a surface mesh. A Cartesian

grid is constructed such that the surface mesh is completely contained in the grid (Figure

19(b)). The regions of the Cartesian grid which are not required to complete the

simulation are identified and pruned away. The result of the pruning operation is shown

in Figure 19(c). Finally, a refined mesh is constructed (Figure 19(d)), and the simulation

is carried out using the Cartesian grid method described in Chapter 2.

 The level set representation of geometries utilized in the pELAFINT3D

framework allows for considerable flexibility in how geometric information is provided

to the pELAFINT3D package. Currently level set fields may be constructed by three

methods. The most general technique for constructing a level set representation is from a

user-provided surface mesh. Level set fields may also be constructed from data that may

be obtained from imaging modalities such as MRI by appealing to methods from the field

of image analysis. This level set construction method forms the basis of a direct image-

to-computation algorithm which is the subject of Chapter 6. Finally, level set fields may

be constructed from analytical expressions.

 The algorithmic details of the pELAFINT3D package are discussed in the

remainder of the current chapter. First, the parallel mesh structure which is at the heart of

the package is presented, and a highly scalable adaptive meshing strategy is developed.

62

The adaptive meshing strategy is used to construct a scalable mesh initialization

procedure which is robust and capable of producing high quality initial mesh refinement

even in the case of geometries that are not well represented by the Cartesian base mesh.

A discussion of a parallel level set construction technique is given next, followed by a

discussion of the parallel linear solvers used in the current work is given. Finally, the

pELAFINT3D package is demonstrated to work efficiently on tens of thousands of cores.

3.2 Parallel Mesh Structure

In the current implementation, the computational grid is a completely distributed

Cartesian base mesh which is enriched with local refinement and mesh pruning. The

mesh is partitioned using the MPI library [75] such that no MPI process contains a copy

of any globally sized mesh entity. Local refinement is achieved using a forest of octrees

approach [28]. Each base mesh cell holds the root of a fully-threaded octree. A fully-

threaded octree is a pointer-based data structure which originates at a root node. The root

node may be sub-divided into 8 child nodes, each of which is stored in a child pointer at

the root. Each of the child nodes may subsequently be divided using pointers. Each node

in the octree stores pointers to all neighboring nodes in all cardinal directions. The octree

satisfies a 2:1 balancing constraint, where no node in the tree has a neighboring node that

is more than one level coarser or finer. The set of octree nodes that have no children will

be called leaf cells. The leaf cells define a grid cell with the size specified by the level the

leaf is located at in the octree. Flow variables are only stored on leaf cells.

The use of adaptive meshing of Cartesian grids is an established concept. The

Adaptive Mesh Refinement (AMR) approach refine a grid in a nested set of regular

rectangular patches [76, 77]. AMR libraries such as PARAMESH [78] and SAMRAI [29]

63

have been developed to remove the burden of mesh management from application

programmers. The use of octree-based refinement has also been used by many

researchers. This approach forms the foundation of the GERRIS flow solver [79] and

p4est libraries [28]. The concept of pruning of a Cartesian grid is similar to the Dynamic

Tubular Grid (DTG) approach which was proposed by Nielsen and Museth [67] as a

more memory efficient alternative to local mesh refinement to store fields for which

values are not required over the entire Cartesian grid. In the DTG approach, data

structures required to compute the evolution of a quantity are stored on a sparse tube of

rectangular grid cells only where necessary. This concept was extended to a Cartesian

grid solver by de Zelicourt et al. [80]. However, to our knowledge, the DTG approach has

not been enhanced with local mesh refinement and massive parallelization in the context

of a Cartesian grid solver.

An example of a mesh generated by the pELAFINT3D package is shown in

Figure 20. In this case, the mesh is partitioned between four MPI processes which are

demarcated in the figure by the four colored regions. The middle of the mesh has been

pruned away, as represented by the open white area. Two levels of refinement have been

applied in a circular pattern.

In the parallel context, the mesh is completely distributed with partitioning

occurring at the base mesh level. Due to the partitioning along base cells, all leaf cells

contained in a base mesh cell are owned by the same partition as can be seen by the

partitioning pattern in Figure 20. Each partition is supplemented by a duplication of a

layer of cells owned by neighboring partitions such that complete discretization stencils

can be formed on every partition. The concept of a ghost layer is made clear in Figure 21.

64

The figure on the right shows the partitioning of the base mesh between three MPI

processes. In the left figure, the partitions are separated to clearly show the halo of ghost

cells that are attached at each partition edge. In the figure, the large chunks of the same

color are the cells owned by each partition. The cells with different coloring around the

edges of the chunks represent ghost cells. As is clear from the figure, the ghost cells are

an exact duplicate of the cells at the edge of neighboring partitions.

The local form of the Cartesian base mesh is in actuality an unstructured mesh.

With consideration of implementation, the base mesh on each partition is stored as an

array of pointers, each of which points to the root of the octree contained in a base cell.

This implementation is particularly useful in the case of adaptive repartitioning of the

mesh and mesh pruning, as it allows temporary pointers to hold the octree structures that

will not be moved during the operation, and simple deletion of pointers for base cells that

are to be trimmed. This not only simplifies the implementation of the repartitioning

operation, but also avoids expensive duplication of complete octree structures that will

not be moved off-process.

In a distributed framework there exists a need for separate local partition and

global numbering systems for grid cells. The global indices of a grid node are often

required to properly complete operations across partition boundaries, whereas partition

numbering allows for variables to be stored in appropriately sized data structures.

Examples of operations for which the global numbering is required include the

establishment of ghost layers and the assembly of global coefficient matrices. A memory

efficient mapping between global and local numbering is accomplished using hash table

65

data structures where the global index is used as a key to a hashing function which

returns the correct entry in a mapping array to obtain the associated local index.

In the case of the base mesh, two sets of numberings are used. The natural

numbering of the Cartesian grid (Figure 22(a)) is used to assign coordinates to each base

mesh cell, as well as in the construction of the base mesh ghost layer. This numbering is

continuous along rows of the base mesh, but is not continuous on the partition. As is

depicted in in Figure 22(a), the natural base mesh numbering is such that the numbering

is established as if no mesh has been pruned. This ensures that the process of locating the

closest grid point to an arbitrary location can be performed in a straight-forward and

efficient manner.

Continuity of numbering on partitions is required by the PETSc [81] and [82]

ParMETIS libraries, which are used by pELAFINT3D to solve linear systems and

compute load-balanced partitions. Consequently, a second global numbering is assigned

which will be called the application ordering. In this numbering scheme, base cells are

numbered from 1 to NB0 on partition 0, NB0+1 to NB0+NB1 on partition 1, and so forth.

Here, NB0 and NB1 are the number of base cells owned by partition 0 and partition 1. An

example of the base cell application ordering is shown in Figure 22(b), where partition 0

is shown in dark blue, partition 1 is colored light blue, partition 2 is green, and partition 3

is yellow. Note that the application ordering is constructed such that pruned cells are

accounted for in the numbering scheme.

With regards to leaf cell numbering, no natural ordering is necessary and only an

application ordering is constructed. All child cells of a parent are numbered consecutively

as shown in Figure 22(d). This is performed recursively, which induces a partial z-

66

ordering of leaf cells inside a base cell. This improves memory locality and cache reuse

when performing operations involving neighbor grid cells.

3.3 Parallel Mesh Construction and Refinement

 The local mesh refinement technology utilized to enhance the Cartesian mesh is

built around a set of key operations. These operations include refinement and coarsening

of an octree structure inside each base cell, as well as ensuring that the refined mesh

satisfies the 2:1 balancing constraint. The implementation of the refinement and

coarsening procedure is a purely communication free task, and so while this procedure

may affect the serial performance of the current algorithm, it does not influence the

algorithm’s parallel scalability. The non-local nature of the 2:1 balance constraint

requires that balance information propagate across partition boundaries, and therefore this

operation has a significant effect on the scalability of the mesh refinement procedure. In

this section, the mesh refinement algorithm is outlined, and a detailed discussion of the

2:1 balancing procedure is given. A discussion of the mesh repartitioning operation

concludes this section.

3.3.1 Parallel Local Mesh Refinement Algorithm

The parallel LMR algorithm can be summarized according to the following set of

steps:

1. Compute the quantities to be used as indicator fields for determining whether

refinement or coarsening is required for a mesh cell using available data.

2. Set refinement/coarsening flags for nodes in the octree structure.

3. Perform refinement and coarsening.

67

4. Perform 2:1 octree smoothing to ensure that no cell has a neighbor that is more

than one level coarser or finer.

5. Update level set tube to flow mesh numbering.

6. Interpolate or restrict variable values for locally owned cells created by

refinement or coarsening.

7. Repartition the mesh.

In this work, the vorticity and velocity gradient fields are used to determine

whether refinement or coarsening is required for a particular cell. If h is a characteristic

grid spacing, and 𝜀|𝜔���⃗ | and 𝜀|∇𝑢��⃗ | are user-specified tolerances for the vorticity and velocity

gradient magnitudes, then a grid cell is determined to require refinement if |𝜔��⃗ |ℎ > 𝜀|𝜔���⃗ |

or |∇𝑢�⃗ |ℎ > 𝜀|∇𝑢��⃗ | . If on the other hand, |𝜔��⃗ |ℎ < 0.25𝜀|𝜔���⃗ | and |∇𝑢�⃗ |ℎ < 0.25𝜀|∇𝑢��⃗ | , the cell

is determined to require coarsening.

Assuming that the values of all variables are current in the partition ghost layers,

all steps except 4 and 7 of the above algorithm can be performed without communication.

Step 7 is not strictly a part of the LMR algorithm. Therefore, Step 4 is the determining

factor of the scalability of the LMR procedure. Truly scalable algorithms for octree mesh

smoothing have only been introduced recently. The scalable implementation of this

operation is the subject of the next section.

3.3.2 Parallel Octree Smoothing

 In order to simplify the construction of discretization operators on the locally

refined grids, the octree structure is required to satisfy a 2:1 balance constraint. A mesh

satisfying the balance constraint has no cell for which a neighboring grid cell across cell

faces, edges, or corners is more than one level finer or coarser. An example of an un-

68

balanced two-dimensional version of an octree, a quadtree, and its balanced completion

are shown in Figure 23. In this example, the quadtree mesh is distributed across to

partitions, P0 and P1, which are distinguished by the grey and white shading. Note that

the balanced completion of the octree mesh requires propagation of information across

the boundary between partitions.

Enforcement of the 2:1 octree balance constraint is non-local operation as the

resolution of imbalances has a ripple effect which is not confined to direct neighbors of

the cell for which an imbalance has been resolved. A naïve algorithm for mesh smoothing

may proceed by attempting to fix balances as they are detected when traversing the octree

in its natural numbering. Unfortunately, resolution of an imbalance between a cell and

one of its neighbors may introduce a new imbalance between the neighbor and its

respective neighbors. This strategy requires a recursive algorithm which checks the

balance status of neighbor cells as imbalances are resolved.

A depiction of the recursive behavior of this naive 2:1 balancing algorithm is

shown in Figure 24. The balancing is applied to a cell represented by a closed black

circle, and the mesh is distributed over two partitions, where the white region belongs to

partition 1 and the grey is owned by partition 2. In Figure 24(a), an imbalance originally

exists between the cell and its east neighbor. In Figure 24(b), the imbalance of Figure

24(a) is resolved. Unfortunately, the resolution leads to imbalances with the west, north,

and north-west neighbors of the original cell. The newly introduced imbalances are

resolved in Figure 24(c), but this again leads to the introduction of new imbalances. In

Figure 24(d), the resolution of the imbalance formed in Figure 24(c) introduces an

69

imbalance across the partition boundary. In Figure 24(e), the imbalance of the

neighboring partition cell is resolved.

As is evident from Figure 24, this approach may lead to an explosion of recursive

function calls. More importantly, establishing an efficient parallel communication pattern

is impossible as imbalances may be introduced or resolved across partition boundaries at

any time during the balancing operation. In order to address this computational challenge,

Tu et al. [83] proposed the Prioritized Ripple Propagation algorithm which builds on the

realization that if cells at the finest level are balanced before cells at any coarser level, no

future balancing operations can alter their balanced status. Moving on to the next finest

level and balancing leads to the same result that no future operation can modify the

balanced status of the two finest levels of refinement. Applying this strategy iteratively

all the way to the coarsest mesh leads to an efficient algorithm with an optimal number of

balancing operations as well as a completely deterministic parallel communication

pattern. A parallel formulation of this algorithm is very easily accomplished by

decomposing the operation into a balancing of local cells at the current level against local

neighbors, and a balancing of ghost cells at the current level against local neighbors [28,

84, 85]. The cells at the edge of a partition that are at each specified level can be

communicated in one message per level. The communicated cells can be reconstructed in

the ghost layer of neighboring partitions, and these ghost cells can be used to apply

balancing across partition boundaries.

The main components of this algorithm are: 1) the construction of a table of

octree leaf nodes that are at the current level for which balancing is applied, 2)

communication and reconstruction of partition boundary leaf nodes at the current level on

70

neighboring partitions, and 3) a balancing operation. If new leaf nodes are introduced

during the balancing operation at a specified level, they naturally enter the leaf node table

at the next coarser level. With a general description of the method in place, the parallel

Prioritized Ripple Propagation algorithm can be summarized according to the following

set of steps:

1. Set the level to the most refined level.

2. Form a table of all locally owned leaf cells at the current level.

3. Find all leaf cells in the table that are at a partition boundary. Start

communicating these cells to neighboring partitions.

4. For all cells in the table, find any neighbors that are more than one level coarser

than the table cell and refine the neighbors until they satisfy the balance

constraint.

5. Finish the communication started in Step 3.

6. Construct communicated leaf cells on neighboring partitions.

7. Resolve balance violations between communicated cells and locally owned

cells.

8. Destroy the table at the current level.

9. If level > 3, level = level – 1, otherwise exit the loop.

10. Return to Step 2.

As the resolution of imbalances at a lower level can never introduce imbalances at

a more refined level, no recursive algorithm is required. Therefore, this algorithm has a

definite communication pattern with one communication required for each mesh level

which is smoothed. Furthermore, no collective communication is required as the only

71

information that needs to be communicated is the state of cells at a partition edge to the

partition that adjoins that edge. This approach is extremely efficient and has been

demonstrated to scale to over 220,000 cores [28]. Additionally, the mesh obtained at the

end of the algorithm is unique and identical with the mesh that would be obtained in the

serial case.

The current algorithm is applied to the most refined mesh level of an octree mesh

which is distributed between two partitions, P0 and P1, in Figure 25(a)-(d). The left

column shows the state for the cells owned by P0 and its ghost layer during the balancing

procedure, and the right column shows the state of the mesh on P1. At the start of the

balancing procedure, the ghost cells are devoid of any refinement. In this example, all

cells at the current level are owned by P0. These cells which compose the level table

formed in step 2 of the current algorithm are marked with symbols in Figure 25(a). The

open symbols represent cells at the current level that are at the edge of P0 and must be

communicated to P1 in step 3. In Figure 25(b), the table cells are balanced against their

locally owned neighbors. Because P1 has no cells in its level table, no balancing occurs

in the right panel at this stage. Next, in Figure 25(c), the cells at the edge of P0 are

communicated to P1, where they are reconstructed. Finally, in Figure 25(d), the cells just

constructed in the ghost layer of P1 are balanced against their neighbors that are owned

by P1.

3.3.3 Adaptive Repartitioning

During the course of refining the mesh, significant load imbalances may be

introduced if a set of partitions refine or coarsen significantly while other partitions

remain mostly unchanged. In this case, it is prudent to re-assign the mesh distribution

72

such that the work distribution is again balanced amongst processes. In this work, a set of

weights that estimate the amount of computational work in each base cell are computed

and provided to partitioning software package ParMETIS [82]. ParMETIS attempts to

compute a new partitioning that results in a balanced distribution of work where the new

partitioning has a minimum amount of communication. Once a new partitioning is

established, variables are transferred to their new owning partition and data structures are

rebuilt.

The repartitioning is implemented in a manner such that computation and

communication are overlapped as much as possible. This is accomplished using the non-

blocking asynchronous MPI_ISend and MPI_IRecv operations [75]. This asynchronous

point-to-point communication routines return immediately after a buffer is off-loaded to

the communication hardware instead of blocking until the communication is completed.

This allows the algorithm to continue computing while the communication is occurring in

the background. The MPI standard requires that the memory of the communication buffer

must not be accessed until the communication has been completed. The status of the

communication can be checked using the MPI_Waitall or MPI_Waitany operations.

MPI_Waitall is a blocking routine that only returns when all of the messages indicated

for testing have completed. The MPI_Waitany operation returns when any of the

messages has completed. This allows each message to be received as it is ready and the

received data to be processed. As a significant amount of computational work such as

octree construction can be accomplished with each of the received messages, the current

work waits for messages to complete using the MPI_Waitany operation. Additionally,

many MPI implementations utilize message size-based delivery protocols such as the

73

eager and rendezvous protocols. The eager protocol assumes that a receiving process has

the capability to receive a small message whenever it receives it, and therefore the

message is sent without checking if the receiving process is ready. The rendezvous

protocol explicitly checks that the receiving process is ready for the message, and thus

has additional overhead. To utilize the knowledge that small messages will be most likely

arrive faster than long messages, the current repartitioning algorithm sends large

messages as soon as possible so that they are completed by the time the algorithm

requires the data contained in any particular message.

The current algorithm for accomplishing the re-partitioning task can be

summarized as:

Given the initial distribution of a refined mesh:

1. Estimate the amount of work associated with each base mesh cell that is

locally owned in the old partitioning. Currently, this is taken to be the total

number of multiplications for all leaf cells contained in the base mesh cell

for the latest Poisson solve.

2. Compute a new partitioning of the base mesh using ParMETIS, where the

work estimate computed in Step 1 is used as the balancing parameter.

3. Based on the new partitioning returned in Step 2, construct a

communication pattern with processes for which data needs to be sent or

received. Currently repartitioning partners are constructed using

MPI_ALLTOALL.

74

4. For each base cell in the old partition, determine whether it is to be kept on

the new partition or moved to a repartitioning partner. Store these in lists

by partitioning partner.

5. For each base cell to be sent to a new process, store the global base index

and the minimum set of leaf cells contained in the base cell for which the

total refined mesh in the base mesh cell can be reconstructed.

Communicate these values to the partitioning partners.

6. For each kept cell, store its new ghost base cells.

7. For each base cell to be sent, store its new ghost layer and communicate

to the new owning process.

8. Pack and start communicating flow variables for all leaf cells which are to

be moved.

9. Delete the mesh in all base cells that are being moved off-process.

10. Create two temporary base mesh data structures. The first holds the base

mesh cells kept from the previous partition, while the second holds base

mesh cells that are newly assigned to the partition.

11. Reconstruct the refined mesh in newly received base mesh cells.

12. Reconstruct the hash-table based global indexing for the base mesh such

that the global indexing is again continuous on each partition.

13. Finish communication started in Step 8, and unpack variables on their

destination partitions.

14. Pack and start communicating variables stored in array format.

75

15. Receive the communication started in 7 and reconstruct the base cell ghost

layer.

16. Duplicate the refined mesh in the base cell ghost layer.

17. Create the permanent base mesh data structure which is composed of the

base mesh kept from the previous partition, newly assigned base mesh,

and the base ghost layer.

18. Finish the communications started in Step 12 and unpack variables into

the newly sized arrays.

19. Create a new pointer array to the leaf cells on the new partition for

efficient access in the flow computations.

20. Reconstruct new global leaf cell indices.

21. Repartition the level set fields.

22. Clean up all partitioning data structures.

3.3.4 Parallel Mesh Trimming

 In section 3.3.3, the adaptive repartitioning algorithm was presented. As part of

that algorithm, the base mesh of the original partition was broken in to two disjoint

pieces: the cells that are kept on the process and those to be moved. The cells are to be

kept are temporarily stored in a secondary data structure, and those destined for another

partition are packed and then their octree structures are destroyed. The form of the data

structures and operations performed in the adaptive repartitioning algorithm make it a

simple matter to permanently delete a base cell from the computation. To accomplish the

trimming operation, a cell that is to be pruned is simply not included in either of the sets

of cells to keep or move, but it is added to the list of cells to destroy.

76

 In the current implementation, only cells located greater than a specified distance

interior to a stationary solid are eligible for trimming. The trimming operation occurs

during the initialization of the octree mesh in two steps. First, during the initial

construction of the base mesh, base cells further than a certain distance inside a stationary

solid object are flagged for removal. Second, during the iterative initial mesh refinement

phase to be presented in section 3.5.4, base cells that are interior to the stationary solid

which contain no leaf cells of the currently most refined level are deleted.

The trimming procedure is depicted in a simple case in Figure 26. Here, a

Cartesian mesh which is distributed amongst four partitions is iteratively refined such that

the refinement occurs in a circular pattern. The starting base mesh and initial partitioning

is shown in Figure 26(a). The dashed circle indicates the region of the original Cartesian

mesh that is eligible for pruning. Figure 26(b) shows the Cartesian grid after pruning. The

mesh is then iteratively refined in Figure 26(c)-(e). In Figure 26(c)-(d), all remaining base

cells which are inside the circle contain mesh at the current most refined level so no

additional pruning is possible in these steps. In Figure 26(e), the mesh has been updated

to a state such that a set of base cells interior to the circle do not contain mesh at the

finest level. These cells are subsequently removed from the mesh.

3.4 Simulation Initialization

The current initialization strategy is carefully implemented in a manner that

introduces no restrictions on the size of the computational grid or on the number of

processes that can be used during the simulation. The strategy is formulated such that no

difficulties are encountered in the initial construction of mesh refinement patterns for

geometries that change rapidly with respect to the base mesh size but smoothly with

77

respect to the refined mesh grid spacing. In the following subsections, each major aspect

of the initialization of the simulation is discussed.

3.4.1 Input of Parameters

The input of parameters is performed using a read-broadcast approach. A root

process opens and reads parameters from a set of input files. The parameters are then

packed into a long character buffer and broadcast to all other processes using a small

number of global broadcasts. This approach is utilized for two reasons. Most importantly,

parallel input/output (IO) is a complicated and expensive operation. A read-broadcast

approach is much more efficient, especially on large distributed machines where the ratio

of compute cores to hard disks is large. Less importantly, the current approach precludes

the requirement of storing a different set of input files for each process to read, in order to

avoid IO contention between processes. This leads to a simpler procedure for setting up

and running simulations on high-end machines.

3.4.2 Base Mesh Initialization

If the initial base mesh distribution is not constructed in a careful manner, the

computational work load of the initial mesh refinement may not be well balanced

between processors which may induce unacceptable set-up times in the best case and

more severely, memory bottlenecks and simulation termination. The initial mesh

refinement pattern is determined solely by the level set fields of the embedded

geometries. However, initial level set representations cannot be constructed until a base

mesh has been established. The current strategy uses a four-step setup approach to

circumvent this difficulty. The result of this procedure is an acceptable partitioning for

the initial mesh refinement phase.

78

In a first step, the natural ordering of the NBglobal global base mesh grid points is

partitioned between the NP MPI processes by assigning the first NBglobal/NP grid points to

process 0, the next NBglobal/NP to process 1, and so forth. Due to the structure of the

Cartesian mesh, it is a simple matter to compute which section of the base mesh each

partition initially owns as well as the number of grid points that every other partition

contains.

Next, a level set field is constructed over the entire base mesh on the initial

partitioning. This level set field is used as an indicator which is used to specify the base

cells that are to be removed during the first application of the mesh trimming operation.

Grid cells that are deeper than a specified distance inside a stationary boundary are

flagged for deletion. The flagged cells are deleted and the mesh structure and ghost layer

are rebuilt.

The level set field is regenerated on the trimmed domain in order to compute an

estimate of the initial refinement location and load. This information is used to specify a

set of partitioning weights that are supplied to the domain partitioning algorithm,

ParMETIS [82]. The graph partitioning algorithm returns a new partitioning of the base

mesh that is both load-balanced and minimizes the amount of communication between

the new partitions. The mesh is reassigned according to the updated partitioning, and the

level set field is reconstructed. The simulation then proceeds to carry out the initial mesh

refinement.

3.4.3 Initial Mesh Refinement

The initial mesh refinement occurs only adjacent to the interface where the level

set value is smaller than some prescribed value. The goal of this step is to provide a

79

minimal mesh refinement that accurately captures the shape of the geometry. Because the

geometry may have regions that change rapidly compared to the base mesh, refining

directly from the base mesh to the finest level is not optimal because this introduces large

amounts of extraneous mesh to ensure that the geometry is accurately captured within the

refinement region. To avoid this complication, the current work utilizes an iterative

scheme to construct the initial refinement pattern.

The refinement procedure starts from a level set field constructed on the pruned

base mesh. Given this level set field, a set of base mesh cells that have a level set value

less than some desired cut-off can be probed to determine if they require refinement. The

probing procedure is implemented using a Taylor series expansion of the base mesh level

set field to compute an estimate of what the level set value would be at each of the base

cell’s potential children. If any potential child of the base mesh cell is found to have an

estimated level set value less than the desired cut-off at the first level of refinement the

base cell is subdivided. Once all base cells have been probed, the newly refined mesh is

re-partitioned using the algorithm described in Section 3.3.3. After re-partitioning, the

level set field is reconstructed on the set of cells that were constructed during the probing

operation. If the maximum number of levels of refinement is greater than one, the

procedure is repeated until the maximum number of refinement levels is reached.

3.5 Ghost Layer Construction

 In the current approach, a partition may have an arbitrary number of irregularly

shaped neighboring partitions with which it must exchange data. This makes efficiently

establishing ghost communication patterns a challenging task if no information is

available to narrow the set of partitions that may potentially contain future ghost cells.

80

One may attempt to bound each partition with a bounding shape, and detect collisions

between partition bounding boxes. While guaranteed to work, there are three drawbacks

to this naive algorithm. First, in order to check collisions, each partition must have access

to the bounding coordinates of all other partitions. This can only be effected using an

MPI_Alltoall communication which inhibits parallel scalability at large core counts.

Second, the irregular nature of the partition shapes makes it difficult to tightly bound

each partition, especially when the partition is composed of two or more disjoint pieces

located at arbitrary locations in the solution domain. Using a simple bounding shape such

as a single sphere or cube generates a large number of false positive collisions, which in

the worst case leads to a partition checking every other partition for ghost cells. Finally,

the bounding shape algorithm only provides information on which neighboring partitions

a partition must communicate with. It does not specify which ghost cells those partitions

contain. To establish this information, the ghost layer must be communicated to all

potential owners who must return which of the cells they actually own.

To overcome the difficulty in determining ghost communication partners, the

current algorithm builds ghost layers from an assumed initial condition. Recall that the

base mesh is initially partitioned by assigning equal sized chunks to each partition, where

each chunk contained a set of cells with sequential natural numbering. This information is

used to construct the initial ghost layer. To do this, each cell in the initial partitioning is

queried for any ghosts that are required to complete discretization stencils. These ghosts

are added to a hash table which allows the same ghost to be entered multiple times

without consuming additional memory or artificially increasing the total number of ghost

cells required. A list of ghost cells is generated from the hash table and the partition

81

where the cells are located is easily obtained from the initial cell distribution counts,

which every partition can generate without communication.

During the repartitioning process ghost layers must be reconstructed. If the new

partition mapping computed by ParMETIS is available in the ghost layer before

partitioning, then any cell to be moved to another partition can be checked for any

potential future ghost cells by scanning the partition mapping of its neighbors. If a set of

ghost cells are identified, they are communicated to the future owning process along with

the partition number that contains the ghost cell. After a partition receives the lists of its

future ghost cells from each process that will be sending cells, the partition can form a

concatenated list of ghost cells which surround the portion of the domain recently moved

on process. A similar list of ghost cells surrounding cells retained on the partition can be

formed, and the complete ghost layer is easily formed. Hash tables are again used to

simplify the operations of assembling the ghost layer.

3.6 Parallel Level Set Construction

In its most basic form, construction of level sets in parallel is a straightforward

task. A partial differential equation is solved on a Cartesian grid which requires a simple

static communication pattern. However, in order to increase efficiency of level set

computations, the current work utilizes a narrow band approach where the level set field

is only stored in a tube of grid points which moves with the interface, and which is wide

enough to hold the level set contours of a prescribed range instead of over the entire flow

mesh. For example, consider the canonical test case of a cylinder with a notch cut in it,

for which the geometry is shown in Figure 27(a). The level set field for this geometry is

shown in Figure 27(b). It is clear from this figure that the level set field is only computed

82

and stored on a small subset of the Cartesian grid in the immediate vicinity of the

interface. This is shown even more clearly in Figure 27(c), which depicts the Cartesian

grid nodes that are contained in the level set tube.

The tube variables include a set of mappings between the tube ordering and the

flow mesh numbering, which will be called the tube indices, as well as the level set value,

the level set normal vector, the level set curvature, etc. These are referred to as the tube

field variables. Each level set is generally located on a subset of the total number of

processes, but level sets may enter new partitions during either the movement of the level

set or the mesh repartitioning process. The distributed nature of the level set complicates

the implementation of the narrowband method tremendously. Consider the Zalesak

problem. Figure 28(a)-(d) show the evolution of the Zalesak level set distributed across 4

partitions. The figures on the left side depict the evolution of the level set field, while the

figures on the right show the distribution of the level set tube across the 4 processes. This

case demonstrates all the possible parallel scenarios. For example, the tube smoothly

enters multiple new processes simultaneously as well as leaves and re-enters partitions.

3.6.1 Parallel Level Set Tube Reconstruction

In the current work, the level set tube is implemented in a three-tiered structure.

The first tier is the set of all level set tube indices such that a neighboring cell has a level

set value of opposite sign. The second tier is the set of grid nodes which are within a

distance of 6∆x of the interface, where ∆x is a representative grid spacing in the level set

tube. The third tier is the union of the second tier and one halo layer of adjacent cells. The

level set advection equation is solved on the set of points in the second tier. After the

advection of the level set field, it may be required to reconstruct the tube. To this end, the

83

level set re-initialization equation is solved to extend the level set field into the edge of

the third tier points of the original tube. The tube is then reconstructed by identifying

which of the points in the original tube satisfy the properties of the first two tiers. The

additional set of halo cells are then found by scanning the edge of the new set of points

constituting the second tier. This implementation strategy is possible due to the CFL

restriction on the allowable distance the level set field may move during one step.

The halo cells are the key to smoothly introducing a level set tube onto partitions

where it did not previously exist but must enter due to advection of the interface. If the

tube is reconstructed on a CFL-based timescale, the only way that a new tube can be

introduced into a partition is if a tube halo cell moves into the ghost layer of another

partition. This information is communicated between neighboring partitions during tube

construction. The neighboring partition then simply checks if it has already identified the

point as a tube point. If it has not, the point is added to the neighbor partition’s tube.

3.6.2 Parallel Level Set Repartitioning

During the following presentation it is assumed that the level set tube will be

repartitioned simultaneously with the rest of the flow variables, such that a repartitioning

pattern of the flow mesh can be used to extract repartitioning patterns for the level set

tubes. The communication of variables is set up using asynchronous non-blocking

operations which make it possible to overlap communication and computation if the

system hardware makes such support available. The algorithm for repartitioning the level

set tubes can now be summarized as:

1. Given the flow mesh repartition list of grid cells that are to be moved to another

process, create counts for each level set tube of the number of cells in the tube

84

that are to be moved off-process. Communicate these counts between the

repartitioning partner pairs in the flow mesh repartitioning communication

pattern.

2. Based on the counts in step 1, construct both send and receive level set

repartitioning data structures that contain:

a. The number of repartitioning partners for which a non-zero number of

tubes will be exchanged.

b. A list of MPI communication status indicators.

c. A list of data structures to hold information about data to be moved to

each repartitioning partner. This data structure holds:

i. The partner’s rank in MPI_COMM_WORLD.

ii. Buffers for sending aggregated messages for the union of all

tube points to be moved to the partner for communicating the level

set field variables such as the level set value, normal vector, and

curvature in one message for real variables and one message for

integer variables.

iii. The number of tubes being moved to or from the partner

iv. A list of data structures to hold information about what indices

to move for each tube to the partner.

3. Pack and start asynchronous non-blocking sends of indices required to

reconstruct the tube on the new set of partitions that will own it.

4. Pack and start asynchronous non-blocking sends of the field variables stored in

the buffers mentioned in step 2.c.ii.

85

5. Receive the messages from step 3 as they arrive and reconstruct the index

mappings for the tubes received.

6. Re-allocate the tube field variable arrays to the correct size and store the values

that are kept from the previous partition.

7. Receive the messages from step 4 as they arrive and store the received field

variable values in the newly sized arrays.

8. Destroy the level set repartitioning data structures.

Because the level set repartitioning pattern is extracted from the mesh

repartitioning pattern, determining communication partners only requires the use of point

to point communication patterns. As a level set tube is a small subset of the overall flow

mesh, the amount of data that is moved during this procedure is also small, so message

aggregation is used to minimize latency penalties.

3.7 Time-Advancement Algorithm

Now that the components of the current algorithm have been established, the

overall time-advancement scheme can be developed. Recalling that the governing

equations are computed using a four-step fractional step method, the operations that

compose the main time loop are the update of moving geometries, solving the momentum

equation, removing the predicted pressure gradient, solving a Poisson equation for

pressure, and adaptive refinement of the computational mesh. In order to prevent the

introduction of a divergence into the velocity field when the mesh is refined, mesh

refinement is completed before the pressure is computed. Because the intermediate

velocity is an O(∆t) approximation to the final velocity, the intermediate velocity is an

adequate indicator of where refinement is required.

86

For convenience, the time advancement of the computation is summarized in the

following set of steps:

1. Move geometries to their positions at time tn+1 and compute the new level set

fields.

2. Compute the first provisional velocity field from the first step of the four-step

fractional step algorithm.

3. Use the velocity field computed in Step 1 to compute the provisional vorticity

and velocity gradient fields. Use the fields as indicator functions for refinement

and coarsening in the LMR algorithm.

4. Apply the LMR algorithm with dynamic repartitioning if requested.

5. Remove the pressure gradient used in Step 2.

6. Communicate the ghost values of the second provisional velocity.

7. Compute intermediate face velocities.

8. Compute the pressure from the second step of the fractional step algorithm.

9. Project the velocity field onto its final value.

10. Communicate the ghost values of the final velocity field.

11. Return to step 1.

3.8 Discretization of Operators on Octree Meshes

The utilization of the octree mesh structure introduces the need for more

complicated discretization schemes for cells that are located at mesh interfaces. In the

current work a finite-volume scheme is used for discretization of cells located at mesh

interfaces in order to ensure mass conservation. Due to the enforcement of the 2:1

balancing constraint, it is only possible for a neighbor of a cell located across a mesh

87

interface to fall into two possible categories: i) the neighbor has children one level finer

than the cell, or ii) the neighbor is one level coarser than the present cell. In order to

maintain a compact and symmetric discretization of the Poisson equation, the convection

and Laplacian terms are treated with different approaches at mesh interfaces. The details

of the particular implementation for each term are now presented.

3.8.1 Treatment of the Laplacian Term at Mesh Interfaces

At a mesh interface, the Laplacian term is discretized in finite-volume form using

a second-order integration scheme:

 ∫∇2𝜓𝑑𝑉 ≅ (𝑓𝑒 − 𝑓𝑤)Δ𝑦𝑃 + (𝑓𝑛 − 𝑓𝑠)Δ𝑥𝑃, (3.1)

where fe, fw, fn, and fs are the fluxes at the east, west, north, and south faces of the cell,

and Δ𝑥𝑃 and ΔyP are the grid spacings. For faces where both the cell and the neighbor are

at the same level, the flux is computed according to a central difference approximation.

For example, in Figure 29(a), grid nodes N and S are at the same level as P. The fluxes at

these faces can be approximated using central differencing:

𝑓𝑁 = 𝜓𝑁−𝜓𝑃
Δ𝑦𝑃

, (3.2)

𝑓𝑆 = 𝜓𝑃−𝜓𝑆
Δ𝑦𝑃

. (3.3)

In directions where the neighbor is coarser, a special form of the flux is required.

In the current work, a symmetric 2nd-order discretization proposed by Lossaso [65] has

been implemented. In Figure 29(a), the east neighbor of P is one level coarser. In this

case, the flux at the east face is approximated using the value at E and the arithmetic

average of the values at the cells which compose E’s west face, which in this case are P

and S. Therefore, the east flux of cell P is

88

 𝑓𝑒 = 𝜓𝐸−0.5(𝜓𝑃+𝜓𝑆)
1.5Δ𝑥𝑃

. (3.4)

Now consider the west neighbor, W, in Figure 29(a) which is divided. In this case,

the flux at the west face of cell P is computed as

 𝑓𝑤 = 0.5(𝑓𝑤1 + 𝑓𝑤2), (3.5)

where 𝑓𝑤1and 𝑓𝑤2 are computed as the east fluxes of W1 and W2 according to equations

similar to (3.4). However, in the present approach, fw1 and fw2 will have the exact same

stencil, and so the west flux is

𝑓𝑤 = 𝜓𝑃−0.5(𝜓𝑊1+𝜓𝑊2)
1.5Δ𝑥𝑊1

 = 𝜓𝑃−0.5(𝜓𝑊1+𝜓𝑊2)
3/4Δ𝑥𝑃

. (3.6)

The overall discretization has the final form

 ∫∇2𝜓𝑑𝑉 ≅𝑎𝑆𝜓𝑆 + 𝑎𝑊1𝜓𝑊1 + 𝑎𝑊2𝜓𝑊2 + 𝑎𝑃𝜓𝑃 + 𝑎𝐸𝜓𝐸 + 𝑎𝑁𝜓𝑁, (3.7)

with discretization coefficients

𝑎𝑆 = Δ𝑥
Δ𝑦
− Δ𝑦

3Δ𝑥
, 𝑎𝑊1 = 2Δ𝑦

3Δ𝑥
, 𝑎𝑊2 = 2Δ𝑦

3Δ𝑥
, 𝑎𝐸 = 2Δ𝑦

3Δ𝑥
, 𝑎𝑁 = Δ𝑥

Δ𝑦
, 𝑎𝑃 = −�2Δ𝑥

Δ𝑦
+ 5Δ𝑦

3Δ𝑥
�.

 (3.8)

This discretization of the Laplacian operator is much more compact than the

discretization applied to the convection term as will be seen in Section 3.9.2. This is

important for two reasons. First, the compact stencil leads to better conditioning of the

coefficient matrix, which enhances the convergence rate of the solution of the Poisson

equation in the fractional step algorithm. Second, the amount of data that is required to be

communicated during the application of iterative solvers is much lower than would be

required for extended discretization schemes.

89

3.8.2 Treatment of the Convection Term at Mesh Interfaces

The explicit time discretization of the convection term provides more freedom in

choosing a numerical scheme because the consequence of the discretization on the

convergence rate of matrix problems does not need to be considered. In the current work,

convective fluxes are computed using a conservative bilinear interpolation scheme [86].

Again, the starting point for the numerical scheme is the finite-volume form of the

convective term:

 ∫∇ ∙ (𝑢�⃗ 𝜓)𝑑𝑉 ≅ (𝑓𝑒 − 𝑓𝑤)∆𝑦𝑃 + (𝑓𝑛 − 𝑓𝑠)∆𝑥𝑃. (3.9)

In this equation, 𝑓𝑒, 𝑓𝑤, 𝑓𝑛, and 𝑓𝑠 are the convective fluxes at the faces, which have the

form 𝑓𝑖 = 𝜓𝑖(𝑢�⃗ ∙ 𝑛�⃗)𝑖 at the ith face. Here, 𝜓𝑖 is an interpolation of 𝜓 to the face, and

(𝑢�⃗ ∙ 𝑛�⃗)𝑖is a mass-conserving face-velocity.

Consider the case in Figure 29(b). In this case, the neighbors N and S are at the

same level as P and they are not divided. The convective fluxes are therefore computed

with standard central differences:

 𝑓𝑛 = 1
2

(𝜓𝑁 + 𝜓𝑃)𝑣𝑛, (3.10)

 𝑓𝑠 = 1
2

(𝜓𝑆 + 𝜓𝑃)𝑣𝑠. (3.11)

Here, vn and vs are the normal velocities at the north and south faces. Now, consider the

east face, where the neighbor E is at a coarser level. In this case, direct application of

central differencing is not possible. To handle this, a fictitious point, E*, is placed where

the location of the neighbor’s cell center would be located if both cells were at the same

level. The value of ψ at E*, ψE∗ , is then interpolated from the surrounding cells using a

conservative bilinear interpolation. In the case of Figure 29(b), the bilinear interpolation

has the form

90

 𝜓𝐸∗ = 0.5625𝜓𝐸 + 0.1875𝜓𝑃∗ + 0.1875𝜓𝑁𝐸 + 0.0625𝜓𝑁∗, (3.12)

Because 𝜓 does not exist at P* and N*, bilinear interpolations are required to assign

values to these locations as well,

 𝜓𝑃∗ = 1
4

(𝜓𝑃 + 𝜓𝑊 + 𝜓𝑆 + 𝜓𝑆𝐸), (3.13)

𝜓𝑁∗ = 1
4

(𝜓𝑁 + 𝜓𝑁𝑊 + 𝜓𝑁𝑁 + 𝜓𝑁𝑁𝑊). (3.14)

Substituting (3.13) and (3.14) into (3.12) results in

𝜓𝐸∗ = 0.046875𝜓𝑃 + 0.5625𝜓𝐸 + 0.046875𝜓𝑊 + 0.015625𝜓𝑁 +

 0.046875𝜓𝑆 + 0.1875𝜓𝑁𝐸 + 0.015625𝜓𝑁𝑊 + 0.046875𝜓𝑆𝐸 +

 0.015625𝜓𝑁𝑁 + 0.015625𝜓𝑁𝑁𝑊. (3.15)

Once the value at 𝜓𝐸∗has been computed, the flux at the east face is now computed using

a central difference according to

𝑓𝑒 = 1
2

(𝜓𝐸∗ + 𝜓𝑃)𝑢𝑒 (3.16)

In order to evaluate the west flux of cell E in Figure 29(b), the east fluxes of P and S, feP

and feS, are constructed in the manner of equation (3.16). Then, for grid node E the west

flux is

𝑓𝑤𝐸Δ𝑦𝑃 = 𝑓𝑒𝑃Δ𝑦𝑃 + 𝑓𝑒𝑆Δ𝑦𝑆. (3.17)

This definition conserves mass explicitly at mesh interfaces.

3.8.3 Velocity Correction at Mesh Interfaces

In the current work, a hybrid variable arrangement is used where the velocity

vector and pressure are stored at the cell center while a set of divergence-free normal

velocities are stored at the cell faces. After the solution of the momentum equation in the

fractional step method, an intermediate face velocity field, 𝑢𝑓∗, is constructed by linear

91

interpolation from the intermediate velocity at cell centers. In the case of computing face

velocities at mesh interfaces, this procedure is applied in manner similar to that described

in section 3.8.2. For directions where no mesh interface exists, the value of the

intermediate velocity is linearly interpolated from the velocity at the cell and its neighbor.

In the case where a coarser neighbor exists, the interpolation scheme of Section 3.8.2 is

used to evaluate the intermediate velocity at a starred point, and then a linear

interpolation between the cell center value and the starred value to the face is computed.

In the case where a neighbor is divided, the face velocity is set to be the area average of

the face velocities of the two children that share the face.

The intermediate face velocity field is used to construct the source term for the

Poisson equation according to

∫∇ ∙ 𝑢�⃗ ∗𝑑𝑉 ≅ �𝑢𝑓,𝑒
∗ − 𝑢𝑓,𝑤

∗ �∆𝑦𝑃 + �𝑣𝑓,𝑒
∗ − 𝑣𝑓,𝑤

∗ �∆𝑥𝑃. (3.18)

After the solution of the Poisson equation, the face velocities are corrected using the

pressure gradients at the face while the cell center velocities are corrected using the

average of the face pressure gradients. In the case where the neighbor is at the same level

as the cell, standard central differencing about the face is used to compute the face

pressure gradient. When the neighbor is coarser, the pressure gradient at the face is

computed according to equation (3.6). In the case where a neighbor is divided, the face

velocity is taken to be the area weighted average of the children’s corrected face

velocities.

3.9 Parallel Linear Solvers

The efficiency of the current solver is highly dependent on the effectiveness of the

methods used to compute the solutions of the linear systems associated with the first and

92

second steps of the fractional step algorithm. Effective preconditioning can dramatically

increase convergence by shifting and clustering the eigenvalues of the linear problem

away from the zero eigenvalue [87]. Of particular importance is the construction of an

efficient preconditioning technique for the Poisson equation contained in the fractional

step algorithm, which accounts for almost 90% of the flow solver time.

In the current framework, the solutions of matrix problems are computed using

iterative solvers contained in the Portable Extensible Toolkit for Scientific Computation

(PETSc) [81]. PETSc is a numerical suite of Krylov-space solvers and preconditioning

techniques that is built on the concept of command line driven composability of Krylov

solvers and preconditioners. This makes it easy to test the effectiveness of a range of

linear solvers for a particular problem without requiring any modification to source code.

PETSc also provides access to many third-party preconditioner and sparse direct solver

packages through the same command line approach. In this work, the most important

preconditioning techniques are incomplete LU (ILU) factorizations and algebraic

multigrid. The PETSc library contains ILU preconditioning methods, as well as an

algebraic multigrid solver, GAMG. An important third-party package which has strong

relevance to the current work is the HYPRE BoomerAMG algebraic multigrid solver [88,

89].

The non-symmetric character of the matrices that result from the current sharp-

interface scheme considerably restricts the available options for Krylov solvers. Krylov

methods that are applicable to non-symmetric matrices include: the minimal residual

method (MINRES), the generalized minimal residual (GMRES) method, various

formulations of the bi-conjugate gradient algorithm (BiCG, BiCGStab(l)), and the

93

transpose-free quasi-minimal residual (TFQMR) method [87]. Numerical

experimentation shows that the stabilized version of the bi-conjugate gradient method,

BiCGStab(l), produces the most efficient convergence behavior across a range of

problems.

The selection of an appropriate preconditioner is much more problem dependent.

Due to the diagonal dominance of the linear system associated with the momentum

equation, ILU preconditioning is sufficient. The preconditioner used in conjunction with

the Poisson equation is a more critical choice. For unstructured meshes, algebraic

multigrid methods are considered the state-of-the-art in preconditioning elliptic problems.

However, the expensive setup phase of a multigrid algorithm may overwhelm the

reduced solution time if the preconditioner must be reconstructed frequently. In the case

of moving boundaries, the preconditioner must be rebuilt each time step. In this case, a

less effective preconditioner may be more efficient due to less investment in setup costs.

Also, in the case of geometric regions of small scale, convergence of multigrid methods

may deteriorate drastically due to the inability of the multigrid algorithm to form

acceptable aggregates.

In order to assess the behavior of each preconditioner when applied to matrices

arising from the current discretization scheme, we solve the test Poisson problem given in

Equation (2.49) on a set of grids of increasing size. The linear system associated with

Equation (2.49) is solved with the BiCGStab(l) Krylov solver, where the matrix is

preconditioned with ILU, GAMG, and HYPRE BoomerAMG in turn. To ensure that the

order of the least-squares treatment utilized in the sharp-interface approach does not

94

significantly affect solve times, Equation (2.49) is solved using both linear and quadratic

least-squares fits.

The times required to solve the system for each of the preconditioners are shown

in Figure 30. It is evident that both GAMG and HYPRE solve times grow linearly with

problem size, whereas ILU preconditioning becomes less efficient as the system size

increases. The HYPRE preconditioner is approximately twice as fast as the GAMG

multigrid solver. The increased cost of GAMG is due to a more expensive setup phase.

The preconditioner setup cost can be amortized in circumstances where the matrix does

not change between solves. This is the case when no boundaries are in motion and mesh

refinement has not occurred since the last solve. Additionally, this optimization can be

utilized during a sub-iteration algorithm where the matrix does not change between sub-

iterations. This can significantly decrease the total amount of time consumed by linear

solves.

3.10 Scaling Study on Kraken

 In this section, we assess the parallel scalability of the current numerical scheme

by carrying out a set of computations on Kraken. Kraken is a Cray XT5 cluster operated

through the National Institute of Computational Sciences at the University of Tennessee

which is located at Oak Ridge National Laboratory. Kraken is composed of 9,408

compute nodes, where each node has two sockets. Each socket has a 2.6 GHz six-core

AMD Opteron processor and 8 GB of memory. In total, Kraken has 112,896 compute

cores, 147 TB of compute memory, and a peak performance of 1.17 PetaFLOP [90]. Each

computational node is connected to a Cray SeaStar2+ router and the SeaStar2+ routers

are connected in a 3-D torus topology.

95

 The vendor tuned MPI library, MPT 5.3.5, was used in the current scalability

study. MPT is an optimized Cray implementation of the MPICH MPI library. Several

environment variables are available to tune the performance of the MPI functionality.

The only environment variable altered in the current study was

MPICH_FAST_MEMCPY, which enabled the use of an optimized memcpy MPI point-

to-point and collective operations.

 The fully adaptive algorithm was tested at large core counts by solving 50 time

steps of flow past a sphere, where the mesh was adapted and re-partitioned every 5 time

steps. The domain size was set to 15x15x50. The base mesh grid spacing was 0.1, and 3

levels of refinement were applied to the mesh. The Reynolds number was set to 1000,

and a refinement criteria threshold of 0.01 was used to ensure that maximum refinement

occurred where vorticity was located.

 The simulation was performed on 1200, 2400, 4800, 9600, and 16512

computational cores. Because unstructured algorithms and sparse matrix solvers are

bandwidth limited, using all the cores on a node will not lead to improved performance,

as the memory bandwidth will saturate which starves the CPU of data. To mitigate this

effect, only three threads were bound to each node socket such that each node supported

6 MPI tasks instead of 12. Allocating MPI tasks in this manner also doubled the amount

of memory available to each process.

 The wall clock times versus time step are shown for each of the job core count in

Figure 31. For all cases, the wall clock time at time steps when mesh refinement and

repartitioning are performed is approximately 2.5 times larger than the walk clock times

of the time steps when refinement does not occur. Therefore, the refinement and

96

repartitioning operation is only slightly more expensive than the flow solver. It is

observed that the wall clock time of the refinement steps is consistently decreased up to a

core count of 9600. There exists more variability in the reduction of run time with core

count for the intermediate time steps, with some steps having a significant reduction in

time between 4800 and 9600 cores, while other time steps do not. In Figure 32, the global

grid size is shown for the 50 time steps of the simulation. The grid initially has

approximately 20 million cells, and after subsequent refinements, has a final size of over

300 million cells. On 9600 cores, the flow solver requires approximately 9 seconds to

solver for 300 million cells, while on 1200 cores, it requires between 30 and 60 seconds.

 The total run time versus number of cores is shown in Figure 33. The straight

solid line represents perfect scaling, where a doubling of cores reduces wall clock time by

a factor of 2. It is observed that below 4800 cores, the scalability of the current

application is quite good. Beyond 4800 cores parallel scalability starts to deviate

significantly from the ideal case. However, even between 9600 and 16,512 cores, there is

a decrease in walk clock time.

In Figure 34, the average number of grid cells per partition is shown for each core

count. The average partition size at time step 1 is marked with triangles, while the

average partition size at time step 50 is shown by squares. At startup, there are nearly

10,000 grid cells per process on 1200 cores, while on 16,512 cores, there are

approximately 700 grid cells per process. At the termination of the simulation, the 1200

core job had an average number of cores of 250,000 cells, while the 16,512 core job had

just over 18,000 cells. Therefore, the parallel scalability at the largest core counts may be

97

suffering due to a lack of enough computational work to compensation for

communication costs.

98

Figure 19 An example of the pELAFINT3D framework applied to an aortic valve
geometry. The geometry is shown in panel (a). In (b), the geometry is enclosed in a
bounding Cartesian grid. In (c), the Cartesian grid is trimmed to conform to the geometry.
In (d), local mesh refinement is applied in the desired locations. The regions of (d) are
colored by partition.

(b)

(c) (d)

(a)

99

Figure 20 An example of a mesh generated by pELAFINT3D. The mesh is a Cartesian
base grid partitioned between four MPI processes with two levels of quadtree refinement
applied in a circular pattern.

Figure 21 A depiction of a distributed base mesh to make the concept of a ghost layer
clear. On the left, the base mesh is distributed between three partitions. On the right, the
partitions are separated to show the layer of ghost cells around each partition edge. The
ghost cells are duplicates of the set of cells that are adjacent to the cells at the edge of a
partition. In this case, the blue cells at the edge of the green piece of the mesh are the
neighbors on the blue partition that have information required by cells on the green
partition.

100

Figure 22 Schematics of the three numbering systems required in the current algorithm.
In (a), the natural base mesh numbering is shown. This numbering is the standard
Cartesian numbering system. It is not continuous on a partition. The application
numbering of the base mesh is shown in (b). This numbering is continuous on a partition,
and is such that the corresponding natural numbering of the cells is in sorted order. In (c),
the application ordering of the refined mesh is shown. This scheme induces a partial z-
ordering.

(b) (a)

(c)

101

Figure 23 A quadtree which does not satisfy the 2:1 balance constraint (left) and the
quadtree after balancing. The quadtree is distributed over two partitions, P0 and P1, and
the imbalance must be resolved across the partition boundary.

P0

P1

P0

P1

102

Figure 24 A depiction of the recursive behavior of a naïve 2:1 quadtree balancing
algorithm in a two partition grid where the white region belongs to partition 1 and the
grey is owned by partition 2. The black circle represents a cell for which imbalances are
to be detected and resolved. In (a), an original imbalance exists between the cell and its
east neighbor. In (b) and (c), the resolution of an imbalance leads to new imbalances for
neighbor cells. In (d), the resolution of the imbalance formed in (c) introduces an
imbalance across the partition boundary. In (e), the imbalance of the neighboring
partition cell is resolved.

P1 P1

P1

P1 P1

P0 P0

P0 P0

P0

(a)

(c)

(e)

(b)

(d)

103

Figure 25 A depiction of the parallel Prioritized Ripple Propagation.

(a)

(b)

(c)

(d)

P1

P0

P0 ghost
layer

P0

P0 ghost
layer

P0

P0 ghost
layer

P0

P0 ghost
layer

P1

P1 ghost
layer

P1

P1 ghost
layer

P1

P1 ghost
layer

P1 ghost
layer

104

Figure 26 A schematic of the mesh initialization procedure. In (a), an initial base mesh is
partitioned in vertical strips. In (b), a portion of the base mesh is pruned and the
remaining mesh is re-partitioned. In (c)-(e), additional refinements occurs, and base cells
that have no mesh at the finest level inside the circle are pruned away.

(e)

(c) (d)

(b) (a)

105

Figure 27 The initial level set field of the Zalesak disk problem. The interface shape is
shown in (a). In (b), the associated level set field is shown, and (c) shows the region of
the mesh that corresponds to the level set narrow band.

(b)

(c)

(a)

106

Figure 28 The evolution of the Zalesak disk level set field over one complete revolution.
The figure shows the level set contours (left), and the narrow band colored by partition
(right) at rotation angles of (a) 0 degrees, (b) 90 degrees, (c) 180 degrees, and (d) 270
degrees.

(a)

(b)

(c)

(d)

107

Figure 29 Configurations of the mesh used in the discussion of (a) the discretization of
the Laplacian operator at mesh interfaces, and (b) the discretization of the convection
operator at mesh interfaces.

(b) (a)

108

Figure 30 Time required in solving the Poisson problem specified by Equation (2.49) on
grids of increasing size. The BiCGStab(l) Krylov solver is preconditioned by ILU,
GAMG, and HYPRE. The sensitivity of solve time to the least-squares treatment applied
in the sharp-interface method is tested by computing the time required for both linear and
quadratic least-squares fits.

109

Figure 31 Wall clock time for the first 50 time steps of the computation of flow past a
sphere with adaptive meshing and repartitioning every 5 time steps for cores counts of
1200, 2400, 4800, 9600, and 16512. The mesh refinement procedure is approximately the
same computational cost as applying the flow solver. All parts of the algorithm reduce in
time as the core count increases.

Figure 32 The grid size for the first 50 time steps of flow past a sphere. The grid starts at
over 20 million grid points, and is refined to approximately 300 million grid points.

110

Figure 33 Wall clock time versus processor count for the solution of flow past a sphere
on 1200, 2400, 4800, 9600, and 16512 cores. Ideal scaling is shown by the solid black
line. The scalability up to 4800 cores shows very good agreement with perfect scaling.
Core counts larger than 4800 show significant deviation from the ideal scaling.

Figure 34 The average number of grid cells per processor for flow past a sphere on 1200,
2400, 4800, 9600, and 16512 cores. The average partition size at time step 1 is showne by
triangles, and the average partition size at time step 50 is shown by squares.

111

CHAPTER 4

VALIDATING THE FLOW SOLVER

4.1 Introduction

In the current chapter, the computational capabilities of the solver are examined

through simulations of problems for which benchmark solutions are available. The level

set capabilities are shown to correctly capture the solution of two test problems from the

literature; the straining of a circular level set in a vortex velocity field, and the rigid body

rotation of a disk that contains a sharp notch. The ability of the flow solver to accurately

capture the vorticity dynamics at solid surfaces at high Reynolds number values is

confirmed by comparison with surface vorticity results for the impulsively started flow

past a stationary cylinder at Reynolds number values of 1000 and 9500. To demonstrate

that the current approach can handle a complex geometry with both concave and convex

curvatures, the flow in a two-dimensional channel with two subsequent semi-circular

constrictions is simulated and compared with experimental and computational results

from the literature. In three-dimensions, the flow past a sphere at a set of Reynolds

numbers is simulated, and the drag coefficient is shown to be in good agreement with

previous studies. To highlight the ability of the mesh pruning strategy to make

simulations in curved three-dimensional geometries feasible, the flow in a 90 degree bend

is computed and compared with experimental results.

Moving boundary capabilities are validated in two-dimensions by re-producing

the surface vorticity results of the impulsively started cylinder problem in a reference

frame where the cylinder is moving while the velocity is quiescent in the far field for a

112

Reynolds number of 1000. To validate the three-dimensional moving boundary

capabilities, the sedimentation of a sphere is simulated and the terminal drag is shown to

match the drag on a stationary sphere in a flow of equal Reynolds number.

4.2 Deformation of a Circular Level Set by a Vortex Flow

In the current section, the evolution of an initially circular level set field by a

vortex induced velocity field is examined. A circular level set field for which the zero

contour had a radius of 0.15 was initialized with its origin located at (0.5,0.75) in a 1x1

domain. The level set was then subjected to the velocity field:

𝑢(𝑥,𝑦) = −2 cos𝜋𝑦 sin𝜋𝑥 sin2 𝜋𝑥 (4.1)

𝑣(𝑥,𝑦) = −2 cos𝜋𝑥 sin𝜋𝑦 sin2 𝜋𝑦 (4.2)

The solution is computed on a Cartesian mesh of with a grid spacing of 0.04. The

Cartesian mesh is enriched with 3, 4, and 5 levels of refinement for fine mesh grid

spacings of 0.005, 0.0025, and 0.00125, respectively, and is distributed across 4 MPI

processes.

The level set field for the case of 5 levels of refinement is shown at T = 0, 1, 2,

and 3 in Figure 35(a)-(d). The circular level set is observed to deform into a long filament

with a thick head and thin tail. The partitioning of the level set tube across the MPI

processes is shown in Figure 36. The level set field is computed smoothly across the

time-varying partitioning of the level set tube, which smoothly adapts such that

approximately the same numbers of tube points are owned by each of the 4 processes for

each of the times shown in Figure 36. Generally, the level set tube will not be distributed

across all processors, but instead only a small subset of the total number of the process

113

pool. However, this does not introduce significant scalability issues, because the level set

calculations are a small portion of the overall simulation time.

The representation of geometries by level set fields is known to suffer from mass

conservation issues. The dissipative nature of the numerical scheme near regions of high

curvature induces a monotonic decay of the object volume as the simulation proceeds. In

the current work, the high-order HJ-WENO spatial discretization of the level set

advection equation is augmented with octree mesh refinement in the vicinity of the zero

level set contour. This enhancement significantly reduces the mass loss that is

experienced when compared to the nominal WENO scheme. To demonstrate this, the

level set solution for the three different levels of refinement is shown in Figure 37(a)-(b).

In these figures, the red coloring represents the location of the level tube for the least

refined case, and blue shows the level set tube for the most refined case. Figure 37(a)

shows that mass loss is much more appreciable in the region of the filament tail where the

zero level set starts to merge, while the object volume is more robust near the head as the

grid becomes coarser (Figure 37(b)). As the mesh is refined, the level set field is capable

of representing the thin tail through a longer period of deformation.

4.3 The Zalesak Disk Problem

In the current section, the behavior of the current level set technique near sharp

edges is investigated by solving for the Zalesak disk problem [91]. The disk of radius 0.2

is originally centered at (0.5,0.75) in a 1x1 domain. The disk is then rotated once about

the point (0.5,0.5) with a rigid body velocity of

𝑢(𝑥,𝑦) = −2𝜋(𝑦 − 0.5) (4.3)

𝑣(𝑥,𝑦) = 2𝜋(𝑥 − 0.5) (4.4)

114

The problem is solved on a Cartesian base mesh with a grid spacing of 0.04 with

4 levels of refinement for a grid spacing of 0.0025 in the level set tube. The WENO

solution of this problem is already presented in Chapter 3. Here, the 5th-order WENO

[64] solution is compared with the 4th-order ENO construction used in [72]. Both of the

solutions are moved forward in time with 3rd-order TVD Runge-Kutta time-stepping. A

comparison of the location of the zero level set contours for both discretization schemes

is presented in Figure 38. From the figure, it is observed that the WENO construction,

while being simpler and cheaper than ENO, maintains a more accurate solution near

sharp corners than the more dissipative ENO scheme.

4.4 Impulsive Flow Past a Stationary Cylinder

To investigate the ability of the current scheme to accurately capture vorticity

evolution at embedded surfaces, the solver is used to simulate the impulsive flow around

a stationary two-dimensional circular cylinder. Koumousatkos and Leonard [92, 93] have

studied the impulsive cylinder problem in the context of Lagrangian vortex methods and

in doing so have accurately computed the drag and lift coefficient histories and temporal

evolution of vorticity at the cylinder surface for Reynolds number values from 40 to

9500. Because the vorticity field of the impulsive problem displays a strong interaction

between localized wake features and boundary vorticity, it provides a good bench mark

case to demonstrate the ability of the current code to capture all relevant physics in an

efficient manner.

To that end, simulations are performed at Reynolds numbers of 1000 and 9500.

The simulation domain is set to a size of 30x30, and the cylinder has a diameter of 1 and

is centered at (7.5,15). The potential flow solution is used to prescribe the initial and

115

boundary conditions. In order to resolve the boundary layer as it forms along the cylinder

surface, a minimum of 10 mesh points across the boundary layer thickness is generally

necessary. An estimate for the average boundary layer thickness over the cylinder surface

can be obtained from ~ 1 √𝑅𝑒⁄ . Therefore, the grid spacing is selected such that the most

refined mesh spacing is ∆𝑥 = 1 10√𝑅𝑒⁄ . Subsequently, the estimated required fine grid

spacing for the Re = 1000 and Re = 9500 simulations are 0.00316 and 0.001025.

The Re = 1000 simulation was performed using a base mesh spacing of 0.2 with 6

levels of refinement to obtain a resultant finest mesh spacing of 0.003125. The simulation

was run for 30,000 time steps at a constant time step size of 0.0001. The initial and final

mesh sizes were approximately 46,000 and 200,000 cells, respectively. For the simulation

with Re = 9500, a base mesh spacing of 0.08 is used where the mesh is enriched with 6

levels of refinement which results in a fine mesh spacing of 0.00125. Both simulations

were computed on 16 processors.

Consider the Re = 1000 case. A qualitative comparison of the resultant vorticity

fields of the current work and of is made in Figure 39. In Figure 40, the current surface

vorticity results are compared with the published results for Re = 1000 at time instants T

= 0.4, 1.0, 3.0, and 5.0, and the time history of the drag coefficient is compared in Figure

41. It is observed that there is excellent agreement between the two sets of results.

Similarly to the Re = 1000 case, the vorticity field, surface vorticity, and drag coefficient

for a Reynolds number of 9500 are compared in Figure 42, Figure 43, and Figure 44.

Again, there is excellent agreement between the two simulations. The vorticity and

computational mesh near the cylinder surface are shown at times of 2.0, 3.5, and 6.0 in

116

Figure 45. It is observed that the mesh follows the resulting vorticity distribution, while

away from the dynamical action, the mesh remains coarse.

The results of this section demonstrate that the current approach is capable of

long-time resolution of complicated interplay between surface vorticity generation and

coherent wake structures. This interplay is seamlessly handled in the current framework

by the introduction of physics-adaptive mesh distribution which is supplemented by

mesh-aware adaptive partitioning.

4.5 Flow Past a Stationary Sphere

 The flow past a stationary sphere is a classic benchmark case for validating three-

dimensional solvers. Despite the symmetric nature of the sphere, the wake is unsteady

and fully three-dimensional in the most general case. A steady axisymmetric wake is

developed for Reynolds number values less than approximately 210 [93]. For Reynolds

number values between 210 and 270, the wake settles into a non-symmetric steady

pattern, while Reynolds numbers above 270 display unsteady flow patterns. The rich

structures of the wake make it a challenging test problem for which there are a large set

of results in the literature with which to compare [72, 93, 94].

 In this section, the current results for flow past a sphere at Reynolds

numbers of 50, 100, and 300 are compared with results from the literature. The sphere is

positioned at coordinates of (7.5,7.5,7.5) in a domain of dimensions 15x15x30. A

convective outflow condition is specified on the top domain boundary, and a velocity of 1

in the z-direction is specified at all other boundaries. The equations are solved on an

adaptive mesh where the finest mesh spacing is 0.02. ry problems.

117

Table 4 presents a comparison of the current results with the results reported in

[72, 93]. For the Reynolds number of 50 and 100 cases, the flow is steady and there exists

a stationary vortex bubble behind the sphere. The drag coefficient and the ratio of the

bubble length, LB, to the sphere diameter, D, are computed and compared with the results

of [72, 93]. Due to the unsteady nature of the flow for the Reynolds number of 300, the

average drag coefficient and the Strouhal number, which represents the frequency with

which vortical structures are shed, are reported in the table. The current values of 0.65

and 0.134 are in excellent agreement with the results of Johnson and Patel (0.65, 0.137),

and those of Marella et al. (0.65, 0.133). In Figure 46, the vortical structures in the wake

of the Re = 300 case are identified using the λ-2 criteria. The interconnected hairpin

structures have been accurately captured for about 10 diameters downstream. In Figure

47, the time history of the lift and drag coefficient for the Re = 300 case are displayed.

The average values of the drag and lift coefficients (0.65, -0.068) are again in good

agreement with the results reported by Johnson and Patel (0.65, -0.069).

4.6 Flow In a Bent Tube

 Biological flows often contain flows in tube-like structures with strong secondary

fluid motion. In this section, the steady flow in a tube bent through a ninety degree angle

is used to validate the ability of the current approach to capture secondary flows in

tortuous tubes. Van de Vosse et al. [95] performed laser Doppler velocimetry

experiments to obtain the center-plane axial velocities at a set of angles around the tube

bend. The Reynolds number based on the tube diameter and the mean inlet velocity is

300. The internal diameter of the tube is 1, and the radius of curvature of the pipe bend is

6. Extensions are added to the start and end of the bend, each 1 diameter in length, to

118

match the experimental conditions. A fully developed parabolic profile is prescribed at

the south domain boundary, and a convective outflow condition is prescribed at the west

domain boundary.

 The shape of the background mesh is shown in Figure 48(a). This demonstrates

the efficacy of the mesh pruning algorithm. Streamlines are plotted over contours of

velocity magnitude on the center-plane for the current solution in Figure 48(b). The

streamlines indicate the presence of a secondary flow in the tube. The axial velocity on

the center-plane at the start of the outlet extension is plotted in Figure 48(c) with the

experimental values obtained by Van de Vosse et al. [95] It is observed that there is

excellent agreement between the current computational results and the experimental

results.

4.7 Flow in a Vocal Fold Geometry at Re = 900

A characteristic feature of the flow in the gap regions of the mechanical heart

valve is that the flow field exhibits a strong jetting which in turn leads to the production

of coherent vortex structures. This is also a characteristic displayed in the flow through

the human vocal folds. As can be seen in Figure 49, the human larynx is a complex

geometry that has a strong region of constriction and expansion which is formed by

structures known as the true and false vocal folds. As air passes through the vocal folds, a

strong jet is formed which becomes unstable and breaks down into a set of vortex

structures. These vertical structures induce an oscillation of the vocal folds thereby

producing sound. Chisari et al. [96] numerically and experimentally examined the start-

up flow through a channel which contains two consecutive constrictions which

approximates the vocal fold structure. Each constriction leads to the formation of a jet

119

which rolls up into a dipolar vortex structure. The structure remains attached at the head

of the jet which experiences secondary instabilities. The vortex head of the first jet then

interacts with the second constriction, leading to the formation of rebound vortices.

Qualitative flow visualizations and quantitative data on the location and size of the

dipolar vortex heads, as well as pressure distributions across the channel width at the

location of the vortex head are reported. The current framework is validated against these

results.

The simulation configuration is shown in Figure 50. The inlet channel has a non-

dimensional diameter of 1. The constrictions are spaced 0.8 units apart in the stream-wise

direction and 0.04 and 0.08 units in the cross-stream direction. The hemispherical caps of

the constrictions have a radius of 0.2. A time-varying uniform inlet boundary condition is

specified at the left domain boundary such that the dimensional experimental velocity is

ramped from 0 m/s to 0.54 m/s over a period of 5 ms. A convective outflow condition is

used at the right domain boundary. The Reynolds number is set at 900. The Cartesian

mesh has a spacing of 0.05 with 5 levels of refinement to give a fine mesh spacing of

0.0015625. The time step size is set to 0.0001. The grid spacing gives about 30 points

across the first constriction. The location of the vortex head emanating from the first

constriction is tracked by storing the location of the minimum pressure between the first

and second constrictions.

In Figure 51, the vorticity contours for the current results are compared with the

results of [96] at dimensional times of 3.53 ms, 5.8 ms, 7.2 ms, 7.8 ms, and 9.5 ms. It is

observed that qualitatively, there is excellent agreement between the two sets of results in

Figure 51(a)-(c). While qualitatively similar, the current vorticity contours predict a

120

stronger set of secondary instabilities on the portion of the jet trailing the vortex head

which originates at the first constriction. As the current simulation is performed at twice

the effective resolution as the results presented in [96], this is probably due to the better

resolution of the thin jet in this work. A comparison of pressure across the channel at the

axial location of the first vortex head is shown in Figure 52 for dimensional times of 3.73

and 4.43 ms. It is observed that at these time steps, there is quite good agreement.

4.8 Flow Past an Impulsively Started Moving Cylinder

To demonstrate the capability to accurately simulate moving boundary problems,

the impulsive cylinder problem studied in Section 4.4 is repeated for the case where the

cylinder is given an impulsive motion in a quiescent fluid at a Reynolds number of 1000.

The velocity is set to zero at all domain boundaries. At T = 0, the cylinder is given an

impulsive velocity of 1.0 in the negative x-direction. The numerical parameters such as

grid spacing and number of processors is the same as the Re = 1000 case in Section 4.3.

The surface vorticity is compared with the results of [92] in Figure 53 for T = 0.4, 1.0,

and 3.0. It is observed that while the curves are slightly less smooth than the stationary

computation, there is still excellent agreement with the published results. The excellent

agreement of the stringent surface vorticity test shows that the current approach produces

high quality results in the presence of moving boundaries.

4.9 Sedimentation of a Sphere

To demonstrate the three dimensional moving boundary capabilities of the current

work, we use pELAFINT3D to compute the sedimentation of a sphere in an otherwise

quiescent fluid. As the motion of the sphere is not forced, but instead evolves as a

response to the flow solution, this problem provides a thorough assessment of the

121

accuracy of the moving boundary solver. To that end, a sphere is placed at a location of

(7.5,7.5,45) in a domain of 15x15x50 units. The ratio of the sphere density to the fluid

density is 10, and a force balance at steady state gives the Froude number to be Fr =

U2 gD⁄ = 11, where U and D are the sphere’s steady settling velocity and diameter, and g

is the magnitude of gravitational acceleration. Here, U and D are taken to be 1. The

Reynolds number, based on the steady settling velocity and sphere diameter is 100. The

Cartesian base mesh is set to a spacing of 0.16, and the mesh is enriched with 3 levels of

refinement for a fine mesh spacing of 0.02. The time step is computed such that a CFL

criteria of 0.1 is maintained.

In order to evolve the motion of the sphere, a weakly coupled FSI model is used.

The sphere’s centroid is advected using Newton’s equations of motion, where the force is

the due to the pressure and viscous stress integrated over the sphere’s surface, and the

weight and buoyancy effects due to gravity. No restriction is placed on the sphere to

settle along any specified direction. This means any spurious force may significantly alter

the sphere’s trajectory.

Because the drag force in the steady settling mode should be equal to the drag

force of a stationary sphere at the same Reynolds number, the current simulation should

have a drag coefficient that converges to a value of 1.09 [93]. The settling velocity should

converge to a value of 1 as was specified in the problem setup. The current results for

vorticity about the x-axis are shown in Figure 54 for the steady settling of the sphere. The

evolution of the drag coefficient and the settling velocity are shown in Figure 55. It is

observed that the drag coefficient evolves in a smooth manner and that it asymptotes to

approximately a value of 1.10. The settling velocity attains a steady value of 1. This set

122

of results lends confidence to the capabilities of pELAFINT3D to handle three-

dimensional moving boundary problems.

123

Table 4 Comparisons of drag coefficient, vortex bubble length, and Strouhal number for
flow behind a sphere at Reynolds numbers of 50, 100, and 300.

Re 50 100 300

Study CD LB/D CD LB/D CD St

Johnson & Patel
[93] 1.57 0.40 1.08 0.88 0.65 0.137

Mittal [94] 1.57 0.44 1.09 0.84 0.00 0.00

Marella [72] 1.56 0.39 1.06 0.88 0.65 0.133

Current 1.57 0.41 1.07 0.87 0.65 0.134

124

Figure 35 Evolution of an initially circular level set field in a straining vortex flow. The
field is shown at times (a) 0, (b) 1, (c) 2, and (d) 3. The level set field is capable of
handling large deformations in a natural manner.

(c)

(b)

(d)

(a)

125

Figure 36 Partitioning of the level set tube for the circle in a vortex field across 4 MPI
processes. The partitioning adapts as the level set field evolves such that each partition
has approximately the same number of level set tube points.

(c)

(b)

(d)

(a)

126

Figure 37 Comparison of the results for the level set field of a circle in a vortex flow for 3
subsequent levels of refinement. The coarsest mesh is shown in red, while the finest mesh
is blue. The entire level set is compared in (a) while the deviations in the position of the
leading tip are shown in (b). The thicker head region of the level set field suffers less
mass loss than the thin tail. Even though the level set is not resolved at the tail, the
computation remains stable.

(b)

(a)

127

Figure 38 Comparison of the final zero contour positions of level set field for the Zalesak
disk using ENO (red) and WENO (blue) spatial discretization for the solution of the level
set advection equation.

128

Figure 39 A comparison the current results for vorticity contours with the results of [92]
for an impulsively started flow around a stationary cylinder at Re = 1000 at a time of 1, 2,
3, 4, 5, and 6.

T = 1

T = 2

T = 3

T = 4

T = 5

T = 6

129

Figure 40 A comparison of the current surface vorticity results (solid line) with the results
of [92] (squares) for an impulsively started flow around a stationary cylinder at Re =
1000 at time (a) T = 0.4, (b) T = 1.0, (c) T = 3.0, and (d) T = 5.0.

Figure 41 A comparison of the current drag coefficient results (solid line) with the results
of [92] for an impulsively started flow around a stationary cylinder at Re = 1000.

(a) (b)

(d) (c)

130

Figure 42 A comparison the current results for vorticity contours with the results of [92]
for an impulsively started flow around a stationary cylinder at Re = 9500 at times of 2,
3.5, and 6.

T = 2

T = 3.5

T = 6.00

131

Figure 43 A comparison of the current surface vorticity results (solid line) with the results
of [92] (squares) for an impulsively started flow around a stationary cylinder at Re =
9500 at time (a) T = 0.4, (b) T = 1.4, (c) T = 1.8, (d) T = 2.6, (e) 4.2, and (f) 5.0.

(a) (b)

(c) (d)

(e) (f)

132

Figure 44 A comparison of the current drag coefficient results (solid line) with the results
of [92] an impulsively started flow around a stationary cylinder at Re = 9500.

133

Figure 45 The evolution of the vorticity field and computational mesh for the impulsively
started flow around a stationary cylinder at Re = 9500 for times of (a) 2.0, (b) 3.5, and (c)
6.0.

(a)

(b)

(c)

134

Figure 46 Vortical structures behind a sphere at a Reynolds number of 300 as indicated
by the λ-2 criterion. The current approach is capable of the long time integration which is
required to capture the wake in great detail far downstream.

135

Figure 47 The time histories of lift and drag coefficient for flow past a sphere at a
Reynolds number of 300. The average values of both coefficients are in good agreement
with the results of [93].

136

Figure 48 The simulation of secondary flow in a 90 degree bent tube at a Reynolds
number of 300. In (a), the ability of the current pruning algorithm is shown by the
resulting Cartesian background grid. In (b) the velocity magnitude is plotted on the
center-plane and streamlines are plotted to indicate the presence of a secondary flow. The
axial velocity at the bend outlet is compared with the experimental results of [95] in (c).

(a) (b)

(c)

137

Figure 49 A schematic of the human larynx. The upstream and downstream channels are
separated by a complex flap system which induces the jet flow required for sound
production.

Figure 50 The representative vocal fold geometry replicated from [96]. The second
constriction gap is twice that of the first constriction.

138

Figure 51 A comparison of vorticity contours for the current results (left) with the results
of [96] (right) at times of (a) 3.53 ms, (b) 5.8 ms, (c) 7.2 ms, (d) 7.8 ms, and (e) 9.5 ms.
There is very good qualitative agreement, but the current results resolve the smaller-scale
features with higher fidelity.

(a)

(b)

(c)

(d)

(e)

139

Figure 52 A comparison of the current results (solid lines) for pressure with the results of
[96] (symbols) at times of 3.73 ms (circles) and 4.43 ms (squares).

140

Figure 53 The vorticity on the surface of an impulsively moving cylinder. The cylinder is
set in motion with unit velocity in the negative x-direction. The current results (solid
lines) compare well with the results of Koumousatkos and Leonard [92] (squares).

(a) (b)

(c) (d)

141

Figure 54 The x-vorticity about a sphere settling under the action of gravity. The
Reynolds number is 100 and the Froude number is 10.

Figure 55 The time histories of (a) drag force and (b) settling velocity for a sphere
settling under the action of gravity. The Reynolds number is 100 and the Froude number
is 11. The force history is smooth in time, showing the efficacy of the current hybridized
interface treatment. The drag force at steady state matches the value of 1.09 predicted by
drag correlation very well.

(a) (b)

142

CHAPTER 5

CLOSURE OF A BILEAFLET MECHANICAL HEART VALVE

5.1 Introduction

As demonstrated in Chapters 3 and 4, the current moving boundary solver is

capable of accurately capturing the intricate vorticity dynamics of moving boundaries in

the Reynolds number range of the MHV problem, where flow features of widely

disparate length scales were resolved in an efficient manner. Additionally it was

concluded that the approach is highly scalable and capable of handling intensive

computational workloads. In this chapter, we show that the current package is a good

approach to modeling the MHV problem by computing the closing phase of the leaflet

motion through the Medtronic ADVANTAGE MHV. In the rest of the chapter, previous

simulations from the literature are reviewed, and the problem setup and results are

discussed.

5.2 Previous Mechanical Valve Simulations

The first simulations of MHVs did not appear until the middle of the 1990’s due

to the computational intensiveness of the problem. In preliminary attempts to study the

MHV problem, the literature consists of simulations in which the valve is held fixed and

the inlet condition lacks pulsatility. Additionally, sometimes the simulations were

performed on reduced portions of the full 3D geometry on the basis of the symmetry of

the prosthesis. Shim and Chang [97] examined static tilting-disk and Bjork-Shiley [98]

valves in the half-open position using the finite-element method. Kiris et al. [99]

computed a RANS solution for the flow through a Bjork-Shiley valve fixed at an angle of

143

30 degrees and the Reynolds numbers was varied from 2,000 to 6,000. King et al. [100]

appealed to the symmetry of the valve geometry to simulate one-quarter of a valve in the

fixed position through the first half of systole up to a Reynolds number of 1500.

Ge et al. [101] performed the first full 3D DNS simulation of a fixed valve in the

fully open position for a steady inlet condition and obtained grid-insensitive results (the

large-scale structures are independent of grid-size). In the static configuration, two pairs

of trailing vortices emanate from the leaflets which surround a core jet. When the

Reynolds number exceeds 1200, the trailing vortices experience oscillations that in turn

induce oscillatory motion of the core jet, eventually leading the jet to become unstable.

Additionally, it was found that when the grid is under-resolved, the mechanism leading to

instability is artificially exhibited at a reduced Reynolds number. These results indicate

that future simulations should be performed for the full heart valve geometry on

sufficiently fine grids.

As an attempt to increase the complexity of MHV simulations while retaining

computational tractability, a significant amount of recent literature has considered

moving valve leaflets and pulsatile inlet conditions at the price of simplifying

assumptions such as two-dimensionality or symmetry about a plane through the valve

housing. Cheng et al. [6] performed a two-dimensional simulation of the closure phase

using an Arbitrary Lagrangian-Eulerian method, and later extended the results to a 3D

simulation where only one-quarter of the valve geometry was considered [19]. Krishnan

et al. [7] studied the closure phase of a two-dimensional approximation of the Medtronic

ADVANTAGE bileaflet valve in the mitral position using a sharp-interface method

enhanced with adaptive quadtree meshing. It was observed that the flow in the gap

144

between the housing and leaflet in the fully closed position involves a complex

interaction of the strong and opposite signed vorticity attached at the leaflet and housing

surfaces, which generates large shear stresses and high particle residence times in this

region. It was noted that while platelet activation and thrombus formation will probably

be experienced, thrombus deposition is not likely to occur in the gap. Unfortunately, the

two-dimensional nature of the simulation precluded the study of the hinge region.

Very recently, literature has been published that attempts to consider the true

physiological conditions of the mechanical heart valve problem. Tai et al. [102] used an

artificial compressibility method in combination with an overlapping grid approach and

loose FSI coupling between the flow field and the valve leaflets to simulate the opening

phase dynamics of a 27 mm St. Jude’s bileaflet mechanical heart valve with a reduced

peak Reynolds number. Nobili et al. [13] simulated the complete 27 mm St. Jude’s

bileaflet mechanical heart valve including hinges by implementing a strongly-coupled

partitioned FSI solver in FLUENT at the physiologic Reynolds number. However, the

leaflets were scaled to 98 percent of their true size and the simulation was under-resolved

downstream to capture the smallest scales in the flow field. Ge and Sotiropoulos [17]

used a sharp immersed boundary method on a curvilinear background mesh (CURVIB) to

solve for the flow in the 23 mm St. Jude’s bileaflet mechanical valve with prescribed

leaflet motion, and Borazjani et al. [15] extended the work of [17] to include full FSI of

the leaflets where the hinge region was neglected. The results of the simulation concluded

that during the acceleration portion of systole, coherent vortical structures are generated

at and shed from the leaflet surfaces as well as the valve housing. These structures

interact with each other undergoing a transition to a turbulent like state. The authors also

145

demonstrated that contrary to previous belief, the flow does not re-laminarize after

breaking down into the small-scale state. It instead survives and is then washed

downstream. The opening phase of the leaflet motion was demonstrated to be unstable in

a weakly-coupled FSI scheme, while the closing phase was much more stable.

It should be noted that none of the 3D work cited has completely resolved all gap

regions. Several studies have been undertaken to try to quantify the flow physics in the

gaps. Most notably, Simon et al. [8] have used the large-scale simulation results of [16] to

supply boundary conditions for a simulation at the scale of the hinge region of a St.

Jude’s mechanical heart valve. It was demonstrated that the shear stress in the hinge

region is much higher during diastole, and that it can be expected that platelet damage

will occur during diastole and thrombosis will occur during systole.

5.3 The Medtronic ADVANTAGE Valve

The current work investigates the flow in a Medtronic ADVANTAGE valve. The

ADVANTAGE valve has been the subject of investigations by previous collaborators,

and serves as a demonstration case in the current thesis (Figure 56). The ADVANTAGE

valve is a variation on the bi-leaflet mechanical valve design with an increased central

orifice area which is intended to reduce the central flow velocity and minimize flow

separation and turbulence [3]. The hinge recess has a butterfly shape and a widened

outflow area to promote washing of blood elements throughout the cardiac cycle.

The housing is approximately 25 mm in diameter, and the leaflets are

approximately 1.31 cm long and 0.09 cm thick [103]. Each leaflet has two hinge tabs

which fit into butterfly-shaped hinge recesses formed in the valve housing. The leaflets

rotate through an angle of approximately 63.8 degrees about an axis connecting each tab.

146

The length from the pivot axis to the leaflet edge is 1.13 cm. The leaflet density and

moment of inertia are 2000 kg/m3 and 3.3x10-9 kg-m2.

The idealized system studied in this work is shown in Figure 57. The valve

housing is inserted in a tube which extends in both the upstream and downstream

directions by 5 tube diameters. The Sinus of Valsava is approximated as three bulbs

which are located just downstream of the housing. The bulbs are oriented at 120 degree

increments around the tube. The valve assembly, which is shown more clearly in Figure

3, was presented in Chapter 1. The hinge recess is shown from an upstream axial view

Figure 3(a). The manner in which the leaflet tabs insert into the butterfly-shaped recess is

clarified in Figure 3(b). A zoomed in view of the leaflet insertion (Figure 3(c))

emphasizes the extremely small gap formed between the leaflet tab and the hinge recess

wall. The hinge recess gap is approximately 0.15 cm. The centerline and housing gaps

that exist when the valve is in the fully closed position are shown in Figure 2. The

centerline gap is approximately 0.017 cm, while the housing gap is 0.03 cm.

5.4 Fluid-Structure Interaction Model

A weakly coupled fluid-structure algorithm is implemented in the current work.

The results of [16] indicate that the opening phase of leaflet motion would be unstable

with such a scheme due to the added mass effect. As a fully coupled FSI algorithm is not

the purpose of the present work, only the closing phase of leaflet motion is simulated. A

fully-coupled sub-iteration scheme with Aiteken acceleration has been constructed for

flexible boundary calculations, and the extension of this work to the rigid case is the

subject of current work.

147

The angular velocity of the leaflet is computed using the non-dimensionalized

Euler equation of rotation,

γI∗ dΩ
��⃗ ∗

dt∗
= TF∗ + (γ−1)V∗

Fr
((x�⃗ g∗ − x�⃗ a∗) × e�⃗ g). (5.1)

Here, V∗ and I∗are the non-dimensional volume and moment of inertia per unit mass of

the leaflet, γ = ρs ρf⁄ is the density ratio of the leaflet and fluid, Ω∗ and TF∗ are the non-

dimensional angular velocity and fluid torque about the fixed rotation axis, Fr = U2 gL⁄

is the Froude number, x�⃗ g∗ − x�⃗ a∗ is the relative position vector between the center of gravity

and the rotation axis, and e�⃗ g is the direction gravity acts. The rigid rotation velocity of the

leaflet is then computed as 𝑢𝑙(𝑥⃗∗) = Ω��⃗ ∗ × 𝑥⃗∗.

5.5 Simulation Setup

The current simulations consider the closure of the fully three-dimensional

Medtronic ADVANTAGE valve with artificially increased gaps. The leaflets are

initialized in the fully open position to avoid FSI stability issues and are scaled to 98

percent of their original size to decrease the computational burden of the calculations. A

constant density Newtonian fluid is assumed to be representative of blood at high shear

rates. The viscosity and density of the fluid are 0.0035 cP and 1000 kg/m3. Therefore, the

density ratio of the leaflet to the fluid is γ = 2. The effects of gravity are not considered in

the current thesis.

Time-varying plug flow velocity boundary conditions were prescribed from the

experimental volumetric flow rate measured through a St. Jude’s MHV in [104]. The

peak Reynolds number associated with the current setup was 6,000. A cubic spline fit

was used to compute flow rates at times between the digitized samplings (Figure 58). The

location of the inlet condition was dynamically altered during the simulation to ensure

148

that inlets always had a mean velocity coming into the domain. A convective outflow

condition was specified at the location of the outlet boundary.

 The level set fields describing the valve were constructed from unstructured

surface mesh representations of the mechanical valve housing and leaflets which were

created using the Gambit mesh generation package. The housing is extended 5 valve

diameters in both the upstream and downstream directions to provide room for flow

development. The housing surface mesh has approximately 627,000 nodes and 1.25

million triangular elements. The leaflet surface meshes each contain roughly 15,000

nodes and 29,000 triangular elements.

The time-step was set to satisfy a CFL criteria of 0.3, and the Cartesian base mesh

spacing was set to 1 mm. Three levels of refinement were used to enrich the mesh which

resulted in a fine mesh spacing of 0.125 mm. This grid spacing is of the order of the

smallest structures observed in [14] which may make the simulation under-resolved. A

grid independence study was not under taken in this work. Refining the current results to

a physiologically correct condition is the subject of ongoing work.

5.6 Results

The MHV simulation was run for one complete cardiac cycle. The evolution of

the complex flow structures, shown in Figure 59 and Figure 60, is depicted using the λ-2

method [105]. The λ-2 method identifies a vortical structure as a coherent region over

which the second eigenvalue of DD + ΩΩT is negative. Here D and Ω are the symmetric

and anti-symmetric components of the velocity gradient tensor. The isocontours are

colored by vorticity magnitude.

149

In Figure 59, the forward flow phase is shown at times of 96, 125, 162, 194, 228,

260, 297, and 333 ms. Figure 60 shows the flow field during the valve closure process at

times of 366, 383, 400, 420, and 435 ms. In Figure 59(a)-(c), the formation of the sinus

vortices is clearly observed. The vortical structure in the top most sinus is stripping a

filament of vorticity being shed from the left leaflet which evolves to wrap around the

main sinus structure. In Figure 59(d), the vortical structures shed from the leaflet surfaces

are clearly visible as an organized system of intertwined horse shoe vortices of

alternating orientations. The sinus structures have begun to strip vortical filaments from

the axial jets which emanate through the valve orifices. If the stripped filaments are on

the sinus side of a separating manifold, they are entrained into the sinus structure,

otherwise they are washed downstream. The filament entrainment leads to an

increasingly complex sinus structure with a large-scale low vorticity structure mixed with

higher vorticity filaments. In Figure 59(e)-(f), the sinus vortices continue to strip vorticity

from the orifice jets. As the flow rate decreases in Figure 59(f)-(h), the flow completely

breaks down into a small-scale turbulent state similar to that observed in [16].

 In Figure 60(a), the reverse flow rate has just initiated. The leaflets are still in the

fully open position in Figure 60(b), but the vortical structures generated during the

forward flow phase are washed back into the ventricular side of the device. The leaflets

start to rotate in Figure 60(c), and the vortical structures being pushed through the closing

central orifice are observed to be stretched into elongated vortex loops in Figure 60(d).

Finally, the leaflets accelerate and quickly obtain attain a fully closed position in Figure

60(e). As the leaflet rotates, viscous cross diffusion causes boundary vorticity to connect

150

with the vortex structures such that the structures reorient themselves into horseshoe

vortices emanating from the leaflet surface.

In order to more clearly understand the flow evolution, Figure 61 and Figure 62

show slices of the vorticity field through the symmetry plane of the valve. In Figure 61,

the vorticity in the x-, y-, and z-planes are shown during the forward flow at times of (a)

96 ms, (b) 125 ms, (c) 162 ms, (d) 194 ms, (e) 228 ms, (f) 260 ms, (g) 297 ms, and (h)

333 ms. In Figure 61(a)-(d), the vorticity is shed from the leaflet surfaces and moves

downstream, where the wake becomes unstable. The vorticity cross-braids in the x- and

y-directions amplifies in Figure 61(e)-(f) as the structures intensify in strength. As the

flow decelerates in Figure 61(g)-(h), a strong asymmetry forms in the vorticity shed from

the bottom leaflet. The closure phase of the cycle is shown in Figure 62(a)-(d). It is

observed that as the leaflets close, structures created during the forward phase are swept

back through the leaflets. This brings regions of opposite signs of streamwise-oriented

vorticity into close proximity, and these aggregate patches are stretched in the streamwise

direction as the leaflets close. This process may lead to a significant stress environment,

and a more detailed understanding of the stress displayed in this time interval must be

obtained.

The time-history of leaflet motion is compared with the results of Borazjani et al

[15] in Figure 63. In the current simulation, the leaflets attain a closed state in

approximately 100 ms. This value is 3 times the closure time reported in [7, 13, 16].

There are several potential sources of this discrepancy. First, the sinuses may not have a

physically relevant shape or orientation. In fact, in the current simulation, the sinuses are

not oriented symmetrically with respect to the valves, and they are far larger than other

151

similar simulations. It is well known that the sinuses are important in determining the

closure dynamics of the leaflets [106]. If the vortical structures are too strong, as may be

induced by the artificial initial position of the leaflets utilized in the current simulation,

the leaflets closure time may be significantly increased. Second, there is a factor of 3

discrepancy in the maximum reverse flow rate used in [16] and [13]. Therefore, the flow

conditions here may have too weak of a peak reverse flow rate. Finally, the simulation

may not exhibit grid independent results. Determining the reason for the discrepancy in

valve motion is the subject of current work.

In Figure 64, the size of the computation grid is shown versus the simulation time

step. The grid initially had approximately 10 million cells, and through the course of the

simulation, the mesh size was increased to 30 million cells. The beginning of the reverse

phase of the flow cycle is evident near 7500 time steps, as the movement of vortical

structures to the ventricular side of the valve causes the grid size to increase after a

period of quasi-steady behavior. Figure 65(a) shows the wall clock time required to

perform each step of the simulation, while Figure 65(b) gives a zoomed in view of the

wall clock time per step at the transition between stationary and moving leaflets. Before

this transition, the mesh was only updated during the refinement procedure which

occurred every 10 time steps. As observed in Figure 65(b), the refinement steps were

nearly 2.5 times more expensive than the steps for which refinement did not occur.

During this part of the calculation, the Poisson equation preconditioner was only

reconstructed during the refinement steps. After the leaflets started to move the

preconditioner was required to be rebuilt each step. This manifests itself as the large

increase in wall clock time for the time steps after motion had initiated. In this phase of

152

the simulation, the refinement steps were only 20 percent more expensive than the

remaining time steps. Therefore, it is noted that the current refinement procedure does not

significantly alter the cost of the simulation.

153

Figure 56 The Medtronic ADVANTAGE bi-leaflet mechanical heart valve. The valve is
composed of two pyrolytic occluders which rotate in butterfly-shaped recesses in a
pyrolytic housing.

154

Figure 57 The geometry of the bi-leaflet mechanical heart valve. The valve is three
components: a housing and two leaflets. The leaflets have tabs at each end which insert
into butterfly-shaped recesses in the housing. In the current setup, the housing is inserted
in a tube which has three bulbs to approximate the Sinus of Valsalva.

155

Figure 58 The unsteady flow rate used in the mechanical valve problem. The flow rate is
constructed from a cubic-spline fit to data digitized from the experimental results of
[104].

156

Figure 59 The forward flow in the Medtronic ADVANTAGE mechanical heart valve as
indicated by λ-2 isocontours colored by vorticity magnitude. The flow is shown at times
of (a) 96 ms, (b) 125 ms, (c) 162 ms, (d) 194 ms, (e) 228 ms, (f) 260 ms, (g) 297 ms, and
(h) 333 ms.

(a) (b)

(d) (c)

(f) (e)

(g) (h)

157

Figure 60 The closure of the leaflets during reverse flow in the Medtronic
ADVANTAGE mechanical heart valve as indicated by λ-2 isocontours. The isocontours
are colored by vorticity magnitude. The flow is shown at times of (a) 366 ms, (b) 383 ms,
(c) 400 ms, (d) 420 ms, and (e) 435 ms.

(a) (b)

(d) (c)

(e)

158

Figure 61 The forward flow in the Medtronic ADVANTAGE mechanical heart valve as
indicated by slices of x-vorticity (left), y-vorticity (center) and z-vorticity (right) on the z
= 1 plane. The flow is shown at times of (a) 96 ms, (b) 125 ms, (c) 162 ms, (d) 194 ms,
(e) 228 ms, (f) 260 ms, (g) 297 ms, and (h) 333 ms.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

159

Figure 62 The reverse flow in the Medtronic ADVANTAGE mechanical heart valve as
indicated by slices of x-vorticity (left), y-vorticity (center) and z-vorticity (right) on the z
= 1 plane. The flow is shown at times of (a) 366 ms, (b) 383 ms, (c) 400 ms, and (d) 420
ms.

(a)

(b)

(c)

(d)

160

Figure 63 The angle of the valve leaflets versus time during valve closure for the current
work (line) and [15] (circles). The closure time is approximately 100 ms in the current
results.

161

Figure 64 The size of the computational grid versus time step for the MHV simulation.
The grid is initially approximately 10 million grid cells, and increases to nearly 30
million cells at the termination of the simulation. The start of valve closure is evidenced
by the return to increasing behavior of the grid size around time step 7500.

Figure 65 In (a), the wall clock time required to apply the flow solver versus time step is
shown, while in (b), a zoomed in view shows the wall clock time behavior at the
transition between the leaflets being stationary and moving.

(a)

(b)

162

CHAPTER 6

IMAGE TO COMPUTATION OF AN INTRACRANIAL ANEURYSM

6.1 Introduction

 In the current chapter, the framework developed in the thesis to this point is

extended to facilitate a direct image to computation technique. The central role of

Cartesian grids and level set representations in the field of image processing make this

extension very natural. The goal is to formulate a seamless and robust methodology to

extract level set representations of boundaries directly from medical images, and then use

the level set directly in the current Cartesian grid solver. When formulated in a single

unifying framework, such an approach circumvents the need for the user to extract the

geometry surface by hand, and perform the time intensive tasks of surface and volume

mesh construction. Additionally, velocity boundary conditions can be obtained for

moving objects from time-series of images through the application of an image

processing technique known as optical flow. While not discussed here, this added benefit

enhances the attraction of the current approach.

 The first section of this chapter is a review of the image processing concept of

segmentation which is the basis of constructing boundary representations from image

data. An emphasis is placed on the active contours method, which determines the

boundary of an object in an image through an energy minimization technique which is

formulated in terms of a level set field. We then describe the specific approach taken in

this work. Finally, we apply the proposed methodology to analyze the flow in an

163

intracranial aneurysm where the detailed process is performed on a set of data obtained

from CT imaging.

6.2 Segmentation in Image Processing

One of the fundamental processes of image-based modeling is segmentation.

Segmentation is the act of computing a disjoint partitioning of image pixels in a manner

that mimics human visualization [107, 108]. Pixels (or voxels, in 3D) in a digital image

are grouped together, or segmented, based on properties like brightness intensity or

texture, and are partitioned by different labels or by contours computed on the image. It is

this partitioning that delineates object boundaries and makes surface modeling possible.

Segmentation methods can be divided into two categories; clustering and contour

evolution. Clustering methods group image pixels/voxels based on some characteristic

defining the cluster. It can be as simple as intensity thresholding, whereby representative

voxels are selected based upon their grey scale levels; i.e. voxels with intensities falling

between predetermined minimum and maximum threshold levels are retained and

smoothed to yield a modeled surface. Alternatively, clustering may involve more

complex statistical methods e.g. adaptive clustering [109, 110], which iteratively

compares individual voxels with local properties of a set of neighborhoods, Ωl, as well as

the global properties of the image domain. By making use of local statistics, such cluster-

based methods can be advantageous when it is desirable to segment images polluted with

high levels of noise or a large global intensity variation. They can also easily be extended

to include an arbitrary number of clusters, facilitating the classification of multiple

imaged objects. The disadvantage of clustering methods is that they do not produce

smooth object surfaces on their own. The grouping of voxels gives a pixelated

164

representation that must be smoothed in a post-processing step. Additionally, the

parallelization of such methods is not straight-forward, as the comparison region, Ωl,

may span several processes. Furthermore, as the comparison regions become coarser and

coarser, the small nature of the problem may lead to severe load imbalance, similar to the

issues experienced in the implementation of parallel multigrid schemes.

Unlike clustering, contour evolution segmentation methods separate images into

smoothly delineated regions, usually through the solution of a partial differential equation

derived using energy minimization techniques. Segmentation of the image domain

proceeds from the placement of an arbitrary seed contour, which is designed to evolve

from its initial state to a minimum energy state where the energy is a function of image

characteristics like intensity, intensity gradient, etc. The clear advantage of contour

evolution methods is that they produce smooth surfaces that require little or no post-

processing. Parallel implementations are also quite straight-forward. However, they can

be sensitive to noise since they have no intrinsic statistical noise removal capabilities. In

addition, the final segmentation result can depend strongly on the number of objects of

different intensity levels existing within the image domain. While some more recent

developments have reduced this dependence by enabling multiple object classification to

take place in the active contours framework [111], the technique for evolving multiple

contours is less straightforward than cluster labeling.

Active contours methods are based on early applications of elastic deformation

theory to computer vision [112], where contours are modeled as having elastic properties

that serve to minimize the energy of mismatch between the evolving contour and the

boundary of the imaged object. Mumford and Shah [113] applied the concept of active

165

contours to the segmentation problem by proposing an energy functional that decomposes

image domain Ω into piecewise smooth regions delineated by segmentation contour C:

E(f, C) = µL(C) + λ ∫ (Io − I)2dΩΩ + ∫ |∇I|2dΩΩ\C . (6.1)

In (6.1), L(C) is the total arc length of the segmentation contour and λ > 0, µ ≥ 0

are weighting parameters. The arc length penalty term ensures that segmentation contours

follow object boundaries smoothly, while the second term quantifies the mismatch

between a representative function I and the original underlying image intensity, Io, and

the third term constrains the spatial variation of I to be smooth within each segment. This

allows for an image to be decomposed into segments that are discontinuous across

contour boundaries while maintaining smoothness within each region.

Chan and Vese [114] later modified (6.1) to delineate images into piecewise

constant regions of average intensity rather than piecewise smooth regions of slowly

varying intensity, thus eliminating the need for a smoothness constraint. They also recast

the energy minimization problem in terms of level sets, so that segmentation surfaces

could be represented implicitly as zero level set isocontours. The modified formulation

also made possible the addition of a second regularization term that restricts the area of a

segment along with the original curve length restriction, giving energy functional

E(ϕ, c1, c2) = µ� |∇ℋ(ϕ)|dΩ
Ω

+ ν�ℋ(ϕ)dΩ
Ω

+ λ1 � (I0 − c1)2ℋ(ϕ)dΩ
Ω

+

λ2 ∫ (I0 − c2)2�1 −ℋ(ϕ)�dΩΩ . (6.2)

In (6.2), µ, ν, and λi are weighting parameters and ℋ(ϕ) is the Heaviside function of

level set field ϕ, which can be approximated on a Cartesian mesh with grid spacing ∆ as

ℋϵ(ϕ) = 1
2
�1 + 2

π
 arc tan �ϕ

∆
�� . (6.3)

166

The constants ci in (6.2) represent the average brightness intensity in each segmentation

region i, and are defined as

c1 = ∫ I0ℋϵ(ϕ)dΩΩ
∫ ℋϵ(ϕ)dΩΩ

 , c2 = ∫ I0�1−ℋϵ(ϕ)�dΩΩ
∫ �1−ℋϵ(ϕ)�dΩΩ

 . (6.4)

Euler-Lagrange minimization of (6.2) leads to a level set evolution equation

dϕ
dt

= δϵ(ϕ) �µ∇ ∙ � ∇ϕ
|∇ϕ|� − ν − λ1(I0 − c1)2 + λ2(I0 − c2)2� , (6.5)

which acts on the ϕ = 0 segmentation contour by making use of a regularized delta

function,

δϵ(ϕ) = ℋϵ
′(ϕ) = 1

π
∆

∆2+ϕ2
 . (6.6)

6.3 The Current Image-to-Computation Algorithm

In this thesis, we propose a method that combines pixel intensity thresh holding

with active contour evolution to produce a smooth segmentation in a reliable and robust

fashion. One disadvantage of active contours is its sensitivity to the presence of multiple

regions of different brightness levels within the image domain. This sensitivity is due to

the two-phase approach of (6.5); curve evolution is driven in large part by average

intensity values calculated in the two regions of Ω. Thus, if the object of interest is bright,

low-intensity objects in Ω will act to steer the evolving contour away from the desired

boundary. We circumvent this problem by making use of intensity thresh holding where

voxels with a brightness intensity in a certain range are identified. Active contour

evolution then takes place on the set of voxels identified by the thresholding operation,

similar in spirit to the mesh pruning algorithm applied to the Cartesian flow solver. This

acts to eliminate much of the global dependency of the segmentation contour on imaged

167

objects defined by intensity values that differ greatly from intensities in the region of

interest (ROI).

We also incorporate an object-labeling scheme [115] that allows connected

surfaces found during the segmentation process to be distinguished from each other

within the context of smooth contours. The tagging operation proceeds by assigning all

points a null object tag. The domain is scanned in its natural ordering until a point that is

inside an object and has a null tag is found. All neighbors of this point which are inside

the object are tagged with an object number of 1. Then, all the newly tagged points scan

their neighbors, and tag the neighbors which are inside the object. The iterative neighbor

tagging continues until no null-tagged neighbors are found. The procedure then continues

by scanning for the next point in the natural ordering which is inside an object and has a

null tag. The classification of the domain into a set of objects reduces the need for a

closely cropped ROI, which in turn lessens the need for the addition of artificial

extensions for inlets and outlets.

Evolution of (6.5) proceeds from an initial level set field that is usually defined as

one or more closed contours with interior regions possessing level set values ϕ ≤ 0 and

exterior regions having ϕ > 0. For this we have adopted a multiple seed approach:

ϕ(x, y, z) = �∏ sin �πxi
ds
�3

i=1 � − 1
2
 , (6.7)

where xi are spatial coordinates in each of the three dimensions of image Ω and ds is

level set seed diameter. The result is a field of ϕ = 0 spheres of diameter ds, spaced ds

apart, embedded in the image domain. This multiple seed initialization approach was

taken as a way to handle generalized threshold-based domain pruning, as a large number

of small seeds are in general more likely to end up being placed in regions of Ω that

168

remain after thresholding than would a single initialization contour. In our experience,

neither the speed nor the accuracy of active contours is sensitive to initial seed size,

provided that the seeds are small enough to occupy (at least in part) all regions of the

thresholded domain while still being large enough to define coherent interior and exterior

regions. Given voxel grid spacing ∆, we have, in practice, found ds = 5∆ to be a reliable

initial seed diameter on a range of images.

The current algorithm for stationary boundaries can be summarized in the

following set of steps:

1) Crop the image to isolate the region of interest.

2) Prune the domain by thresh holding intensity to remove outlying voxels from

the segmentation process.

3) Initialize the pruned domain with spherical level set seeds.

4) Perform segmentation via active contours evolution on the pruned domain. Re-

initialize the level set to make it a signed distance function.

5) Tag connected regions as distinct objects.

6) Interpolate the level set field of desired objects onto the base mesh of the flow

solver.

7) Iteratively refine the level set field by interpolation during mesh refinement.

6.4 Direct Image-to-Computation of an Intracranial Aneurysm

In this section, we apply the proposed methodology to extract the flow

characteristics of an intracranial aneurysm. The geometry of the aneurysm is obtained

from a set of 128 CT scan images. In Figure 66, the steps outlined in the previous section

are applied to the image data set. First, the approximate region of the aneurysm is

169

extracted from the data set of the entire skull, as is shown in the inset figure in step 1.

Thresholding is applied to the cropped image, and the voxels that fall in the specified

range are shown in red in step 2 of Figure 66. The voxels identified in step 2 are then

initialized with a set of uniformly spaced spherical level sets (red spheres in step 3 of

Figure 66) of the form described in the previous section. The seeds are evolved by the

active contours method (step 4), and the shape of the aneurysm is now clearly observed

as the intersection of a bulge with 4 vessel segments.

However, the segmentation has identified a total of three surfaces, two of which

are inconsequential to the current purposes. In order to extract the surface of interest, we

apply the object tagging algorithm to the segmentation results, which in step 5 of Figure

66 has clearly identified three distinct connected regions, of which object 3 is the

aneurysm that we wish to study. The level set field for object 3 is retained and

interpolated onto the base mesh of the flow solver. Because the shape of the aneurysm is

well described on the base mesh, a sufficient representation of the geometry is obtained

on the refined mesh by interpolation from the image-based level set representation.

The final extracted aneurysm geometry is shown in Figure 67, along with the

boundary conditions applied to each of the vessel segments emanating from the aneurysm

bulb. The system contains two inlets and two outlets as shown. A uniform flow profile is

assigned at both inlets with UI2 = 0.9UI1, where UI1 and UI2 are the velocity magnitudes at

the inlets. A convective outflow condition is applied at both outlets. The simulation is

performed at a Reynolds number of 219, where the Reynolds number is defined based on

the maximum width of inlet 1 and UI1. The base mesh spacing is set to 0.2, and 3

170

additional levels of refinement are applied during the simulation. The solution is run for

20,000 time steps, which is sufficient to obtain the steady solution.

 The streamlines in the aneurysm bulb at steady state are shown in Figure 68. The

pressure contours are displayed on the streamlines, which gives an interpretation to how

the flow is accelerating along the trajectory. The streamlines in the inlet sections of the

flow indicate the presence of secondary flows in the curved vessels similar to that

observed in the bent tube case presented in Chapter 4. The two inlet jets merge which

induces a strongly tortuous streamline pattern in the aneurysm bulb. A separating

manifold exists for which streamlines originating from an inlet in a certain region do not

become entangled in the streamline bulb, but instead pass around the bulb and directly to

an outlet.

 The pressure and wall shear stress, defined as the magnitude of the tangent

component of the viscous stress on the aneurysm surface, are shown in Figure 69 and

Figure 70. It is observed that the pressure on the surface in the vicinity of the attachments

of the inlet vessels to the bulb decreases quickly in response to the strong acceleration of

the two inlet streams as they merge. A pressure maximum is observed on the concave

intersection of outlet 2 with the bulb as the fluid must strongly change trajectory to flow

into the outlet vessel. The shear stress attains a maximum at the shoulder region where

the vessels meet the aneurysm bulb.

6.5 Conclusions

 In this chapter, an image to computation algorithm which minimizes user

intervention was proposed. The current methodology builds on the Cartesian grid and

level set based framework developed in the rest of the thesis which makes the extension

171

very natural. The algorithm was then applied to obtain the geometry describing an

intracranial aneurysm and subsequently compute the steady flow in the aneurysm bulb. In

this application, image segmentation was performed using the active contours algorithm,

where the segmentation arises as the energy minimizing state of an elastic curve

evolution equation.

 This work is a first step in formulating a general approach for simulating moving

systems from four-dimensional data sets. The geometry of the problem is computed

according to the current technique. The additional component for moving boundary

problems is obtaining a smooth boundary velocity. To this end, one can apply optical

flow methods which obtain velocities at each pixel/voxel through considerations of

physical laws governing the time-varying behavior of pixel intensity. With this approach

in place, the current methodology provides a comprehensive and powerful approach to

modeling biological fluid dynamics in patient specific cases.

172

Figure 66 A flow chart depicting the current image-to-computation algorithm. In steps 1
and 2, pre-processing improves the robustness of the algorithm. In steps 3 and 4, the
image is segmented which results immediately in level set representations. In step 5,
connected regions are identified and given unique numbering. In step 6, the user selects
the region of interest, and all other objects are discarded.

3
1

2

1. Crop to isolate
the region of

interest

2. Threshold to
remove voxels

that have outlying
intensity values

3. Populate
remaining regions

with level set
initialization

4. Segment by
active contour

evolution

5. Identify
segmented objects
and assign them

i l b l

6. Retain desired
objects and

interpolate them
onto the CFD

domain

173

Figure 67 A schematic of the segmented intracranial aneurysm. The aneurysm bulb is
attached to four vessels. Two vessels are treated as inlets, and two are specified as outlets
as shown.

174

Figure 68 The flow pattern in the aneurysm is elucidated by plotting streamlines. The
streamlines are colored by pressure value to indicate the acceleration behavior of the
flow.

175

Figure 69 A plot of the surface pressure induced by flow in the intracranial aneurysm.

Figure 70 A plot of the wall shear stress induced by the flow intracranial aneurysm. The
stress is a maximum at the shoulders of the geometry where the bulb meets the vessels.

176

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Contributions of the Current Thesis

The current thesis has developed a massively parallel framework for efficiently

solving complex incompressible flow problems with the presence of moving boundaries.

In summary, the specific contributions of this thesis are:

1. A massively parallel adaptive grid framework has been developed which operates

efficiently on tens of thousands of computational cores. This has been shown to

facilitate the solution of problems where the computational grid is upwards of half

of a billion grid cells in size.

2. A novel combination of a dynamic tubular grid storage scheme for the Cartesian

base mesh with octree mesh refinement leads to an increased range of

applicability of the current method to geometries where a large amount of

Cartesian mesh would be extraneously placed outside the solution domain.

3. A novel hybridized least-squares ghost fluid method has been developed which is

robust in the presence of complex geometries with both strong concave and

convex curvatures. The hybridization of the scheme significantly reduces the

magnitude of numerical pressure oscillations that are generated as an immersed

boundary moves through the mesh.

4. A completely distributed narrow band level set field implementation was

developed. The narrow band tube was stored using the memory efficient dynamic

177

tubular grid approach. The narrow band tubes can be adaptively repartitioned

during the computation in an efficient manner.

5. A direct image to computation technique was developed by drawing on the

connection between level sets and segmentation techniques of image analysis.

The methodology was demonstrated through an analysis where the flow through

an intracranial aneurysm was computed using level sets extracted from CT

images.

6. The fully three-dimensional closure flow through a bi-leaflet mechanical heart

valve was computed including the gap region between the leaflet edge and the

valve housing. Both the forward and reverse flows were computed, but motion of

the valves only occurred during the closure phase of the calculation.

7.2 Future Work

The framework developed in this thesis has been shown to allow one to solve very

complex computationally challenging problems in an efficient manner. However, there

are many avenues for future work, both in the development of the numerical package as

well as the use of the framework to examine more complex problems.

1. The major thrust of the current work was the development of a solver scalable to

tens of thousands of cores. However, partitioning of the mesh occurs at a very

coarse-grained level. This removes a considerable level of control that may

introduce difficulty in obtaining acceptable load-balanced partitions when many

levels of refinement are used. Additionally, there exists the possibility that most

of the ghost and hybrid cells may end up on a small number of partitions. As the

least-squares solves can become computationally expensive in large numbers, this

178

may introduce a large load-imbalance and increase simulation times un-

necessarily. To mitigate these problems, the option of partitioning at the leaf cell

level should be implemented.

2. The current framework has required the development of a large amount of source

code. A package of this magnitude must be easily maintainable and modifiable if

it is to appeal to a large user base. LOCI is a framework that constructs program

schedules from user-provided facts and rules in a way that the program is

guaranteed to be internally consistent. This strategy provides a partial verification

of program correctness and significantly reduces the risk of faulty results. The

current techniques should be implemented in the LOCI framework to enhance the

attractiveness and ease of use for future users.

3. The data structures used to construct and contain the adaptive mesh do not have

optimal cache coherence behavior. To improve memory performance, the current

fully-threaded octree should be re-implemented as a flat octree. Threaded trees

can be reconstructed at times when neighbor finding is crucial and difficult, such

as 2:1 balancing, and then subsequently destroyed.

4. To make the current mechanical heart valves simulation tractable on the available

computational resources, the grid resolution was not able to adequately resolve

the hinge region. To avoid numerical complications, the hinge region was slightly

enlarged. The current package is capable of running on vastly greater

computational resources than were available, and the current MHV problem

should be recomputed using these resources where the hinge region is properly

resolved. This type of resolution could require billions of grid points.

179

5. The current simulations were only able to be carried out to capture the closure

dynamics of the mechanical heart valve, as the opening phase requires a strongly

coupled fluid-structure interaction algorithm, which was beyond the scope of the

present thesis. A strongly coupled model should be implemented and the

simulation described in the previous task should be carried out with the proper

leaflet dynamics.

6. The image to computation technique described in Chapter 6 has currently only

been implemented for stationary boundaries. To extend the algorithm to moving

boundaries, a method of extracting boundary velocities must be implemented.

Such a scheme can be built around the optical flow technique. This technique uses

rules governing the evolution of image intensity values to compute a velocity of

each pixel. This allows one to extract the velocity of a surface by combining

optical flow with image segmentation.

In conclusion, pELAFINT3D is a powerful framework which holds promise in

studying many complex problems. The numerical schemes presented in this thesis are

easily implemented, and the package has been validated against many benchmark

problems. The large-scale computing facility of pELAFINT3D has been demonstrated,

but there is much room for optimization. The Cartesian fabric of the package makes

extensibility of the physics and numerics easy to accomplish, which makes the

pELAFINT3D framework even more powerful.

180

REFERENCES

1. Lloyd-Jones, D., et al., Heart disease and stroke statistics—2009 update.
Circulation, 2009. 119(3): p. 480-486.

2. Chandran, K.B., S.E. Rittgers, and A.P. Yoganathan, Biofluid mechanics: the
human circulation. 2007: CRC Press.

3. Korfer, R., et al., The Worldwide Mid-Term Experience with the Medtronic
ADVANTAGE? Bileaflet Mechanical Heart Valve. JOURNAL OF HEART
VALVE DISEASE, 2006. 15(3): p. 404.

4. Bluestein, D., Y. Li, and I. Krukenkamp, Free emboli formation in the wake of bi-
leaflet mechanical heart valves and the effects of implantation techniques. Journal
of biomechanics, 2002. 35(12): p. 1533-1540.

5. Bluestein, D., E. Rambod, and M. Gharib, Vortex shedding as a mechanism for
free emboli formation in mechanical heart valves. TRANSACTIONS-
AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF
BIOMECHANICAL ENGINEERING, 2000. 122(2): p. 125-134.

6. Cheng, R., Y. Lai, and K.B. Chandran, Two-dimensional fluid-structure
interaction simulation of bileaflet mechanical heart valve flow dynamics. The
Journal of heart valve disease, 2003. 12(6): p. 772.

7. Krishnan, S., et al., Two-dimensional dynamic simulation of platelet activation
during mechanical heart valve closure. Annals of biomedical engineering, 2006.
34(10): p. 1519-1534.

8. Simon, H.A., et al., Numerical Investigation of the Performance of Three Hinge
Designs of Bileaflet Mechanical Heart Valves. Annals of biomedical engineering,
2010. 38(11): p. 3295-3310.

9. Quinlan, N.J. and P.N. Dooley, Models of flow-induced loading on blood cells in
laminar and turbulent flow, with application to cardiovascular device flow.
Annals of biomedical engineering, 2007. 35(8): p. 1347-1356.

10. Dooley, P.N. and N.J. Quinlan, Effect of eddy length scale on mechanical loading
of blood cells in turbulent flow. Annals of biomedical engineering, 2009. 37(12):
p. 2449-2458.

11. Ellis, J., T. Wick, and A. Yoganathan, Prosthesis-induced hemolysis: mechanisms
and quantification of shear stress. The Journal of heart valve disease, 1998. 7(4):
p. 376.

12. Liu, J., P. Lu, and S. Chu, Turbulence characteristics downstream of bileaflet
aortic valve prostheses. Journal of biomechanical engineering, 2000. 122(2): p.
118.

181

13. Nobili, M., et al., Numerical simulation of the dynamics of a bileaflet prosthetic
heart valve using a fluid-structure interaction approach. Journal of biomechanics,
2008. 41(11): p. 2539-2550.

14. Bellofiore, A. and N.J. Quinlan, High-Resolution Measurement of the Unsteady
Velocity Field to Evaluate Blood Damage Induced by a Mechanical Heart Valve.
Annals of biomedical engineering, 2011. 39(9): p. 2417-2429.

15. Borazjani, I., L. Ge, and F. Sotiropoulos, Curvilinear immersed boundary method
for simulating fluid structure interaction with complex 3D rigid bodies. Journal of
Computational Physics, 2008. 227(16): p. 7587-7620.

16. Borazjani, I., L. Ge, and F. Sotiropoulos, High-Resolution Fluid–Structure
Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in
an Anatomic Aorta. Annals of biomedical engineering, 2010. 38(2): p. 326-344.

17. Ge, L. and F. Sotiropoulos, A numerical method for solving the 3D unsteady
incompressible Navier-Stokes equations in curvilinear domains with complex
immersed boundaries. Journal of Computational Physics, 2007. 225(2): p. 1782-
1809.

18. Chandran, K., C. Lee, and L. Chen, Pressure field in the vicinity of mechanical
valve occluders at the instant of valve closure: correlation with cavitation
initiation. The Journal of heart valve disease, 1994. 3: p. S65.

19. Cheng, R., Y.G. Lai, and K.B. Chandran, Three-dimensional fluid-structure
interaction simulation of bileaflet mechanical heart valve flow dynamics. Annals
of biomedical engineering, 2004. 32(11): p. 1471-1483.

20. Taylor, C.A., T.J.R. Hughes, and C.K. Zarins, Effect of exercise on hemodynamic
conditions in the abdominal aorta. Journal of vascular surgery, 1999. 29(6): p.
1077-1089.

21. Zhang, Y., et al., Patient-specific vascular NURBS modeling for isogeometric
analysis of blood flow. Computer Methods in Applied Mechanics and
Engineering, 2007. 196(29): p. 2943-2959.

22. Pekkan, K., et al., Physics-driven CFD modeling of complex anatomical
cardiovascular flows—A TCPC case study. Annals of biomedical engineering,
2005. 33(3): p. 284-300.

23. Ferziger, J.H. and M. Perić, Computational methods for fluid dynamics. Vol. 2.
1999: Springer Berlin etc.

24. de Zélicourt, D.A., et al., Individualized computer-based surgical planning to
address pulmonary arteriovenous malformations in patients with a single
ventricle with an interrupted inferior vena cava and azygous continuation. The
Journal of thoracic and cardiovascular surgery, 2011. 141(5): p. 1170-1177.

182

25. Tseng, Y.H. and J.H. Ferziger, A ghost-cell immersed boundary method for flow
in complex geometry. Journal of Computational Physics, 2003. 192(2): p. 593-
623.

26. Mittal, R. and G. Iaccarino, Immersed boundary methods. Annu. Rev. Fluid
Mech., 2005. 37: p. 239-261.

27. Sethian, J.A., Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials
science. 1999: Cambridge Univ Pr.

28. Burstedde, C., L.C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees. Submitted to SIAM
Journal on Scientific Computing, 2010.

29. Wissink, A.M., et al., Parallel multi-physics AMR applications using the SAMRAI
Library, in Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande2001, ACM: Palo Alto, California, United States. p. 184.

30. Luo, H., et al., On the numerical oscillation of the direct-forcing immersed-
boundary method for moving boundaries. Computers & Fluids, 2012. 56(0):
p. 61-76.

31. Peskin, C.S., Flow patterns around heart valves: a numerical method. Journal of
Computational Physics, 1972. 10(2): p. 252-271.

32. Peskin, C.S., The immersed boundary method. Acta numerica, 2002. 11(1): p.
479-517.

33. Peskin, C.S., Numerical analysis of blood flow in the heart. Journal of
Computational Physics, 1977. 25(3): p. 220-252.

34. McQueen, D.M. and C.S. Peskin, Heart simulation by an immersed boundary
method with formal second-order accuracy and reduced numerical viscosity.
Mechanics for a New Mellennium, 2002: p. 429-444.

35. Bagchi, P., P.C. Johnson, and A.S. Popel, Computational fluid dynamic
simulation of aggregation of deformable cells in a shear flow. Journal of
biomechanical engineering, 2005. 127: p. 1070.

36. Eggleton, C. and A. Popel, Large deformation of red blood cell ghosts in a simple
shear flow. Physics of Fluids, 1998. 10: p. 1834.

37. Marella, S.V. and H. Udaykumar, Computational analysis of the deformability of
leukocytes modeled with viscous and elastic structural components. Physics of
Fluids, 2004. 16: p. 244.

183

38. Leveque, R.J. and Z. Li, The immersed interface method for elliptic equations
with discontinuous coefficients and singular sources. SIAM Journal on Numerical
Analysis, 1994: p. 1019-1044.

39. Lai, M.C. and C.S. Peskin, An immersed boundary method with formal second-
order accuracy and reduced numerical viscosity. Journal of Computational
Physics, 2000. 160(2): p. 705-719.

40. Roma, A.M., C.S. Peskin, and M.J. Berger, An adaptive version of the immersed
boundary method. Journal of Computational Physics, 1999. 153(2): p. 509-534.

41. Glowinski, R., et al., A distributed Lagrange multiplier/fictitious domain method
for flows around moving rigid bodies: application to particulate flow.
International journal for numerical methods in fluids, 1999. 30(8): p. 1043-1066.

42. Wang, X. and W.K. Liu, Extended immersed boundary method using FEM and
RKPM. Computer Methods in Applied Mechanics and Engineering, 2004.
193(12-14): p. 1305-1321.

43. Balaras, E., Modeling complex boundaries using an external force field on fixed
Cartesian grids in large-eddy simulations. Computers & Fluids, 2004. 33(3): p.
375-404.

44. Kim, J., D. Kim, and H. Choi, An immersed-boundary finite-volume method for
simulations of flow in complex geometries. Journal of Computational Physics,
2001. 171(1): p. 132-150.

45. Fadlun, E., et al., Combined immersed-boundary finite-difference methods for
three-dimensional complex flow simulations. Journal of Computational Physics,
2000. 161(1): p. 35-60.

46. Lai, M.C. and Z. Li, A remark on jump conditions for the three-dimensional
Navier-Stokes equations involving an immersed moving membrane. Applied
mathematics letters, 2001. 14(2): p. 149-154.

47. Li, Z. and M.C. Lai, The immersed interface method for the Navier–Stokes
equations with singular forces. Journal of Computational Physics, 2001. 171(2):
p. 822-842.

48. Fedkiw, R.P., et al., A non-oscillatory Eulerian approach to interfaces in
multimaterial flows (the ghost fluid method). Journal of Computational Physics,
1999. 152(2): p. 457-492.

49. Gibou, F., et al., A second-order-accurate symmetric discretization of the Poisson
equation on irregular domains. Journal of Computational Physics, 2002. 176(1):
p. 205-227.

184

50. Mittal, R., et al., A versatile sharp interface immersed boundary method for
incompressible flows with complex boundaries. Journal of Computational Physics,
2008. 227(10): p. 4825-4852.

51. Udaykumar, H., et al., A sharp interface Cartesian grid method for simulating
flows with complex moving boundaries. Journal of Computational Physics, 2001.
174(1): p. 345-380.

52. Udaykumar, H., R. Mittal, and P. Rampunggoon, Interface tracking finite volume
method for complex solid–fluid interactions on fixed meshes. Communications in
numerical methods in engineering, 2002. 18(2): p. 89-97.

53. Udaykumar, H., S. Marella, and S. Krishnan, Sharp-interface simulation of
dendritic growth with convection: benchmarks. International journal of heat and
mass transfer, 2003. 46(14): p. 2615-2627.

54. Chessa, J. and T. Belytschko, An extended finite element method for two-phase
fluids: Flow simulation and modeling. Journal of Applied Mechanics, 2003.
70(1): p. 10-17.

55. Chessa, J., P. Smolinski, and T. Belytschko, The extended finite element method
(XFEM) for solidification problems. International Journal for Numerical Methods
in Engineering, 2002. 53(8): p. 1959-1977.

56. Dolbow, J., N. Moes, and T. Belytschko, An extended finite element method for
modeling crack growth with frictional contact. Computer Methods in Applied
Mechanics and Engineering, 2001. 190(51-52): p. 6825-6846.

57. Ingram, D.M., D.M. Causon, and C.G. Mingham, Developments in Cartesian cut
cell methods. Mathematics and Computers in Simulation, 2003. 61(3): p. 561-572.

58. Hartmann, D., M. Meinke, and W. Schröder, A strictly conservative Cartesian
cut-cell method for compressible viscous flows on adaptive grids. Computer
Methods in Applied Mechanics and Engineering, 2011. 200(9): p. 1038-1052.

59. Murman, S.M., M.J. Aftosmis, and M.J. Berger, Implicit approaches for moving
boundaries in a 3-D Cartesian method. AIAA paper, 2003. 1119: p. 2003.

60. Gibou, F. and R. Fedkiw, A fourth order accurate discretization for the Laplace
and heat equations on arbitrary domains, with applications to the Stefan problem.
Journal of Computational Physics, 2005. 202(2): p. 577-601.

61. Lee, J., et al., Sources of spurious force oscillations from an immersed boundary
method for moving-body problems. J. Comput. Phys., 2011. 230(7): p. 2677-2695.

62. Seo, J.H. and R. Mittal, A sharp-interface immersed boundary method with
improved mass conservation and reduced spurious pressure oscillations. Journal
of Computational Physics, 2011.

185

63. Sethian, J.A., Theory, algorithms, and applications of level set methods for
propagating interfaces. Acta numerica, 1996. 5(1): p. 309-395.

64. Jiang, G.S. and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations.
SIAM Journal on Scientific computing, 2000. 21(6): p. 2126-2143.

65. Losasso, F., R. Fedkiw, and S. Osher, Spatially adaptive techniques for level set
methods and incompressible flow. Computers & Fluids, 2006. 35(10): p. 995-
1010.

66. Adalsteinsson, D., A fast level set method for propagating interfaces, 1994,
University of California.

67. Nielsen, M.B. and K. Museth, Dynamic Tubular Grid: An efficient data structure
and algorithms for high resolution level sets. Journal of Scientific Computing,
2006. 26(3): p. 261-299.

68. Sussman, M. and E. Fatemi, An efficient, interface-preserving level set
redistancing algorithm and its application to interfacial incompressible fluid flow.
SIAM Journal on Scientific computing, 1999. 20(4): p. 1165-1191.

69. Choi, H. and P. Moin, Effects of the computational time step on numerical
solutions of turbulent flow. Journal of Computational Physics, 1994. 113(1): p. 1-
4.

70. Yue, W., C.L. Lin, and V.C. Patel, Numerical simulation of unsteady
multidimensional free surface motions by level set method. International journal
for numerical methods in fluids, 2003. 42(8): p. 853-884.

71. Brown, D.L., R. Cortez, and M.L. Minion, Accurate projection methods for the
incompressible Navier-Stokes equations. Journal of Computational Physics, 2001.
168(2): p. 464-499.

72. Marella, S., et al., Sharp interface Cartesian grid method I: an easily implemented
technique for 3D moving boundary computations. Journal of Computational
Physics, 2005. 210(1): p. 1-31.

73. Baek, H. and G.E. Karniadakis, A convergence study of a new partitioned fluid-
structure interaction algorithm based on fictitious mass and damping. J. Comput.
Phys., 2012. 231(2): p. 629-652.

74. Lorensen, W.E. and H.E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. 1987. ACM.

75. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming
with the message passing interface. 1999.

186

76. Berger, M.J. and P. Colella, Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 1989. 82(1): p. 64-84.

77. Berger, M.J. and R.J. LeVeque, Adaptive mesh refinement using wave-
propagation algorithms for hyperbolic systems. SIAM Journal on Numerical
Analysis, 1998. 35(6): p. 2298-2316.

78. MacNeice, P., et al., PARAMESH: A parallel adaptive mesh refinement
community toolkit. Computer physics communications, 2000. 126(3): p. 330-354.

79. Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries. Journal of Computational Physics, 2003.
190(2): p. 572-600.

80. Zélicourt, D., et al., Flow simulations in arbitrarily complex cardiovascular
anatomies–An unstructured Cartesian grid approach. Computers & Fluids, 2009.
38(9): p. 1749-1762.

81. Balay, S., et al., PETSc Users Manual Revision 3.2. 2011.

82. Karypis, G., Metis/Parmetis web page, University of Minnesota, 2008.

83. Tu, T. and D. O’Hallaron, Balance refinement of massive linear octrees, 2004,
Technical Report CMU-CS-04-129, Carnegie Mellon School of Computer
Science.

84. Tu, T., D.R. O'Hallaron, and O. Ghattas. Scalable parallel octree meshing for
terascale applications. 2005. IEEE.

85. Isaac, T., C. Burstedde, and O. Ghattas. Low-cost parallel algorithms for 2: 1
octree balance. in Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International. 2012. IEEE.

86. Krishnan, S., An adaptively refined Cartesian grid method for moving boundary
problems applied to biomedical systems. 2006.

87. Saad, Y. and Y. Saad, Iterative methods for sparse linear systems. Vol. 620. 1996:
PWS publishing company Boston.

88. Chow, E., A.J. Cleary, and R.D. Falgout. Design of the hypre preconditioner
library. in SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing. 1998.

89. Falgout, R., J. Jones, and U. Yang, The design and implementation of hypre, a
library of parallel high performance preconditioners. Numerical solution of
partial differential equations on parallel computers, 2006: p. 267-294.

90. Laboratory, O.R.N., 2012.

187

91. Zalesak, S.T., Fully multidimensional flux-corrected transport algorithms for
fluids. Journal of Computational Physics, 1979. 31(3): p. 335-362.

92. Koumoutsakos, P. and A. Leonard, High-resolution simulations of the flow
around an impulsively started cylinder using vortex methods. Journal of Fluid
Mechanics, 1995. 296(1): p. 1-38.

93. Johnson, T. and V. Patel, Flow past a sphere up to a Reynolds number of 300.
Journal of Fluid Mechanics, 1999. 378(1): p. 19-70.

94. Mittal, R. and F. Najjar, Vortex dynamics in the sphere wake. Red, 1999. 2: p. 2.

95. Van de Vosse, F., et al., A finite element analysis of the steady laminar entrance
flow in a 90 curved tube. International journal for numerical methods in fluids,
2005. 9(3): p. 275-287.

96. Chisari, N., G. Artana, and D. Sciamarella, Vortex dipolar structures in a rigid
model of the larynx at flow onset. Experiments in Fluids, 2011. 50: p. 397-406.

97. Shim, E. and K. Chang, Three-dimensional vortex flow past a tilting disc valve
using a segregated finite element scheme. Comput Dyn J, 1994. 3: p. 205.

98. Shim, E.B. and K.S. Chang, Numerical analysis of three-dimensional Björk–
Shiley valvular flow in an aorta. Journal of biomechanical engineering, 1997.
119: p. 45.

99. Kiris, C., et al., Computational approach for probing the flow through artificial
heart devices. Journal of biomechanical engineering, 1997. 119: p. 452.

100. King, M., et al., A three-dimensional, time-dependent analysis of flow through a
bileaflet mechanical heart valve: comparison of experimental and numerical
results. Journal of biomechanics, 1996. 29(5): p. 609-618.

101. Ge, L., et al., Numerical simulation of flow in mechanical heart valves: grid
resolution and the assumption of flow symmetry. Journal of biomechanical
engineering, 2003. 125: p. 709.

102. Tai, C., K. Liew, and Y. Zhao, Numerical simulation of 3D fluid-structure
interaction flow using an immersed object method with overlapping grids.
Computers & structures, 2007. 85(11-14): p. 749-762.

103. Shu, M.C.S., et al., Flow Characterization of the ADVANTAGE" and St. Jude
Medical" Bileaflet Mechanical Heart Valves. JOURNAL OF HEART VALVE
DISEASE, 2004. 13(5): p. 814-822.

104. Dasi, L., et al., Vorticity dynamics of a bileaflet mechanical heart valve in an
axisymmetric aorta. Physics of Fluids, 2007. 19: p. 067105.

188

105. Jeong, J. and F. Hussain, On the identification of a vortex. Journal of Fluid
Mechanics, 1995. 285(69): p. 69-94.

106. Grigioni, M., et al., Three-dimensional numeric simulation of flow through an
aortic bileaflet valve in a realistic model of aortic root. ASAIO journal, 2005.
51(3): p. 176-183.

107. Brice, C.R. and C.L. Fennema, Scene analysis using regions. Artificial
intelligence, 1970. 1(3): p. 205-226.

108. Pal, N.R. and S.K. Pal, A review on image segmentation techniques. Pattern
recognition, 1993. 26(9): p. 1277-1294.

109. Pappas, T.N., An adaptive clustering algorithm for image segmentation. Signal
Processing, IEEE Transactions on, 1992. 40(4): p. 901-914.

110. Ashton, E.A. and K.J. Parker, Multiple resolution Bayesian segmentation of
ultrasound images. Ultrasonic imaging, 1995. 17(4): p. 291-304.

111. Vese, L.A. and T.F. Chan, A multiphase level set framework for image
segmentation using the Mumford and Shah model. International Journal of
Computer Vision, 2002. 50(3): p. 271-293.

112. Terzopoulos, D., et al. Elastically deformable models. in ACM Siggraph
Computer Graphics. 1987. ACM.

113. Mumford, D. and J. Shah, Optimal approximations by piecewise smooth functions
and associated variational problems. Communications on pure and applied
mathematics, 2006. 42(5): p. 577-685.

114. Chan, T.F. and L.A. Vese, Active contours without edges. Image Processing,
IEEE Transactions on, 2001. 10(2): p. 266-277.

115. Herrmann, M., A parallel Eulerian interface tracking/Lagrangian point particle
multi-scale coupling procedure. Journal of Computational Physics, 2010. 229(3):
p. 745-759.

	University of Iowa
	Iowa Research Online
	Fall 2012

	A massively parallel adaptive sharp interface solver with application to mechanical heart valve simulations
	John Arnold Mousel
	Recommended Citation

	MouselDissertation1_DoctoralAbstract
	ABSTRACT

	MouselDissertation2_PreliminaryPages
	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	MouselDissertation3_Body - Copy
	CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions of the Current Thesis

	CHAPTER 2 THE CARTESIAN GRID METHOD
	2.1 Introduction
	2.2 Review of Cartesian Grid Methods
	2.3 Level Set Fields
	2.4 The Current Cartesian Grid Method
	2.4.1 Governing Equations
	2.4.2 Classification of Grid Points
	2.4.3 Fractional Step Algorithm
	2.4.4 Discretization of Operators
	2.4.5 Ghost Node Treatment
	2.4.6 Hybrid Node Treatment
	2.4.7 Surface Vorticity and Force Calculation

	2.5 Validation of the Current Interface Treatment
	2.5.1 Poisson Equation with Dirichlet Conditions
	2.5.2 Poisson Equation with Neumann Conditions
	2.5.3 In-line Oscillating Cylinder

	2.6 Conclusion

	CHAPTER 3 PARALLEL ADAPTIVE FRAMEWORK
	3.1 Overview of the Current Framework
	3.2 Parallel Mesh Structure
	3.3 Parallel Mesh Construction and Refinement
	3.3.1 Parallel Local Mesh Refinement Algorithm
	3.3.2 Parallel Octree Smoothing
	3.3.3 Adaptive Repartitioning
	3.3.4 Parallel Mesh Trimming

	3.4 Simulation Initialization
	3.4.1 Input of Parameters
	3.4.2 Base Mesh Initialization
	3.4.3 Initial Mesh Refinement

	3.5 Ghost Layer Construction
	3.6 Parallel Level Set Construction
	3.6.1 Parallel Level Set Tube Reconstruction
	3.6.2 Parallel Level Set Repartitioning

	3.7 Time-Advancement Algorithm
	3.8 Discretization of Operators on Octree Meshes
	3.8.1 Treatment of the Laplacian Term at Mesh Interfaces
	3.8.2 Treatment of the Convection Term at Mesh Interfaces
	3.8.3 Velocity Correction at Mesh Interfaces

	3.9 Parallel Linear Solvers
	3.10 Scaling Study on Kraken

	CHAPTER 4 VALIDATING THE FLOW SOLVER
	4.1 Introduction
	4.2 Deformation of a Circular Level Set by a Vortex Flow
	4.3 The Zalesak Disk Problem
	4.4 Impulsive Flow Past a Stationary Cylinder
	4.5 Flow Past a Stationary Sphere
	4.6 Flow In a Bent Tube
	4.7 Flow in a Vocal Fold Geometry at Re = 900
	4.8 Flow Past an Impulsively Started Moving Cylinder
	4.9 Sedimentation of a Sphere

	CHAPTER 5 CLOSURE OF A BILEAFLET MECHANICAL HEART VALVE
	5.1 Introduction
	5.2 Previous Mechanical Valve Simulations
	5.3 The Medtronic ADVANTAGE Valve
	5.4 Fluid-Structure Interaction Model
	5.5 Simulation Setup
	5.6 Results

	CHAPTER 6 IMAGE TO COMPUTATION OF AN INTRACRANIAL ANEURYSM
	6.1 Introduction
	6.2 Segmentation in Image Processing
	6.3 The Current Image-to-Computation Algorithm
	6.4 Direct Image-to-Computation of an Intracranial Aneurysm
	6.5 Conclusions

	CHAPTER 7 CONCLUSIONS AND FUTURE WORK
	7.1 Contributions of the Current Thesis
	7.2 Future Work

